最近在复现Qwen2-VL-7B-Instruct这个大模型,链接:https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
问题与解决方案
我先把我遇到的问题和解决方案写在前方:
报错信息:ValueError: Unrecognized configuration class <class ‘transformers.models.qwen2_vl.configuration_qwen2_vl.Qwen2VLConfig’> for this kind of AutoModel: AutoModelForCausalLM.
原因:Qwen2VLForConditionalGeneration在Qwen2-VL-7B-Instruct中不能加载
官方解决方案:https://github.com/QwenLM/Qwen2-VL/issues/43
简单总结:将
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig;model_name_or_path = "Qwen/Qwen2-VL-7B-Instruct"
修改为:
from transformers import Qwen2VLForConditionalGeneration
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
即可
Qwen2-VL-7B-Instruct 模型功能
Qwen2-VL-7B-Instruct 是一个多模态大模型,功能主要包括:读取本地或者链接图片,输出图片内容;对比两幅图像(本地或者在线连接)的内容;读取本地视频(mp4格式)内容等,也比较好玩。先给大家看hugging face中的模型model card中的快速复现代码:
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2VLForConditionalGeneration.from_pretrained(
# "Qwen/Qwen2-VL-7B-Instruct",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# default processer
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
扩展功能:
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
## Local file path
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/your/image.jpg"},
{"type": "text", "text": "Describe this image."},
],
}
]
## Image URL
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "http://path/to/your/image.jpg"},
{"type": "text", "text": "Describe this image."},
],
}
]
## Base64 encoded image
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "data:image;base64,/9j/..."},
{"type": "text", "text": "Describe this image."},
],
}
]
这个模型还是很好玩的,感兴趣的小伙伴可以试试!