- 博客(43)
- 收藏
- 关注
原创 机器学习9——决策树
ID3 需要评估每个属性的信息增益。基尼指数衡量数据集的不纯度GiniS1−∑j1kPj2GiniS1−j1∑kPj2PjP_jPj是类别jjj在数据集SSS中的比例。基尼增益ΔGiniGiniS−∣SL∣∣S∣GiniSL∣SR∣∣S∣GiniSRΔGiniGiniS−∣S∣∣SL∣GiniSL∣S∣∣SR∣Gini。
2025-06-29 22:52:56
878
原创 机器学习8——神经网络下
通过误差反向传播来更新各层权重,从而逐步减少预测误差。输入信号流过网络,产生输出输出与期望结果对比,计算误差将误差从输出层反向传播至隐藏层基于误差更新权重,减少误差单次样本误差函数(instantaneous error):En12∑j∈Cdjn−yjn2En21j∈C∑djn−yjn2平均误差(用于 batch 模式):Eav1N∑n1NEnEavN1n1∑N。
2025-06-29 22:50:04
890
原创 机器学习7——神经网络上
人工神经网络(Artificial Neural Network,ANN)是一种计算模型,灵感来源于生物神经系统,特别是人脑的工作方式。其核心思想:两个关键特点:每个输入 xjx_jxj 通过一个连接权重 wjw_jwj 与神经元连接:u=∑j=1mwjxju = \sum_{j=1}^{m} w_j x_ju=j=1∑mwjxj这里 uuu 是输入的加权和。偏置 bbb 是一个外部常量项,相当于控制“阈值”:v=u+bv = u + bv=u+b可以看作是加了一个固定值的输入,常
2025-06-29 22:43:57
670
原创 机器学习6——线性分类函数
牛顿法的下降方向更陡,是因为它不仅利用了梯度的方向,还根据 Hessian(即二阶导数信息)自适应地调整了步长和方向,使下降速度沿着最快变小的路径。我们对上面的展开式求导,令导数为 0(为什么?为什么一维只展开一阶项,多维要展开到二阶项?PPT 上给出了缩小解空间的一种方式:引入“边界”(margin),要求。所以牛顿法每次直接跳到局部抛物线的最低点方向,而不是慢慢沿斜坡滑。不仅看梯度,还用 Hessian(H)矩阵调整方向和步幅。(极小值或极大值)。只用一阶导数,沿着负梯度走,小步慢慢试探。
2025-06-27 21:46:47
687
原创 机器学习5——非参数估计
首先考虑最简单的情况,样本x是一维的,那么我们将x的取值范围分成k个等间隔的区间,统计每个区间内样本的个数,由此计算每个区间的概率密度。所以,随着样本数的增加,区域的体积应该尽可能小,同时又必须保证区域内有充分多的样本,但是每个区域的样本数有必须是总样本数的很小的一部分。的增加而减小,但减小的速度不会太快,以保证每个窗口中仍然有足够的样本数量,避免估计的噪声太大。可以注意到,小区间的大小选择与估计的效果是密切相连的。是一个pdf函数吗?是概率,再除以体积得到的是概率密度)估计方法,是直方图法的数学基础。
2025-06-27 21:45:07
952
原创 机器学习4——参数估计之贝叶斯估计
所以我们要“反过来推”,从数据出发,倒推出这个参数。这就是最大似然的直觉: “哪个参数让我们实际观测到的数据。我们在每个类别内部进行建模的时候,类别标签已经是已知的固定量。假设我们要预测某人是否患病(1 or 0),你用逻辑回归来建模,参数是。所以 MLE 可以被看作一种“没有先验信息时的贝叶斯估计”。这就是贝叶斯方法“把模型参数的不确定性也考虑进来”的精髓。我们应该考虑所有可能的参数值,不要只依赖一个点估计!:参数的后验分布,需通过训练数据计算。是哪一类的,我们已经隐含地知道了类别标签。
2025-06-27 21:43:07
929
原创 机器学习3——参数估计之极大似然估计
我们观察到了数据,就用它来找出"最有可能"生成这些数据的参数值。也就是说,找到让观测数据“最可能”出现的参数值。"参数不是一个确定值,而是一个不确定的分布。看到数据后,我只是更新了我对它的信念。前两个是常数项,不影响优化,目标函数实质上是最小化平方误差项。类似前页的协方差,需要进行修正才能成为无偏估计。"先有参数,再有数据;现在有了数据,反推参数。代入高斯密度函数后,乘积项包含了指数和常数项。方差的最大似然估计存在偏差,其期望为。的概率分布中独立同分布采样得到的。方差的估计偏差是一个经典的证明。
2025-06-27 21:41:48
878
原创 机器学习2——贝叶斯理论下
我们使用高斯分布建模每个类别的特征分布。高斯分布不仅仅是由“均值”控制位置,还由“协方差矩阵”控制形状和方向。P(x∣ωi)=N(μi,Σi)P\left(\mathbf{x} \mid \omega_i\right)=\mathcal{N}\left(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i\right)P(x∣ωi)=N(μi,Σi)其中 Σi\boldsymbol{\Sigma}_iΣi 表示该类别在每个维度上的扩展程度(方差),以及不同维度间的相
2025-06-27 21:39:26
645
原创 机器学习1——贝叶斯理论上
事件越不可预测(概率越低),其发生时提供的信息量应越大。均匀分布时熵最大(不确定性最高),确定分布时熵最小(零)。在某些情况下,我们不仅关心分类是否正确,还关心错误的代价。为此,我们引入损失函数。如果苹果的表面通常是光滑的,而橘子的表面通常是粗糙的,则。,即在给定观测值 x 的情况下,尽可能做出正确的分类决策。,当我们观察到数据 x 时,我们希望选择最可能的类别。:在已知 B 发生的情况下,事件 A 发生的概率(,即根据观察到的证据,反向推测某个假设的可能性。:在 A 发生的情况下,事件 B 发生的概率(
2025-06-27 21:29:43
878
原创 项目实训技术实现——横向对比最近的CVPR论文成果:Paper2Poster
维度他人实现 tree_split_layout.py我们实现 Probabilistic_layout.py布局阶段是否知道内容?❌ 不知道内容长度✅ 通过 log(text_len+1)、log(fig_area+1) 预先感知空间分配是否匹配内容量?❌ 仅按启发式 sp 拆分,不考虑实际需求✅ 学习式 sp 预测,完全受控于内容体积是否可能在渲染阶段撑破?✅ 常见问题❌ 几乎杜绝,除非模型极度异常是否需要后处理修复?✅ 需要 deoverflow、VLM 检测、文本缩写。
2025-06-16 01:20:14
740
原创 项目实训技术实现——启动优化挑战:从8分钟到秒级的“三板斧”
这次性能优化之旅是一次经典的调试探案过程。日志是你的眼睛:仔细观察日志中的每一条警告和信息,它们往往隐藏着问题的真相。理解工具的原理:知道pip install背后发生的事情(下载、缓存、编译)远比只知道如何使用它更重要。从网络到磁盘,再到CPU/GPU:性能瓶颈的排查通常遵循这个路径。先解决网络下载问题,再解决本地IO(缓存),最后解决计算(编译)问题。通过这“三板斧”,我们不仅解决了项目的执行速度问题,也为未来所有基于PyTorch和Hugging Face生态的项目积累了一套宝贵的“最佳实践”
2025-06-16 01:16:54
708
原创 项目实训技术实现——核心关键:基于二叉分割的布局生成算法
至此,我们完成了从“设计稿(XML)”到“可学习数据”的关键转换。本篇所介绍的两个函数,通过忠实地加载原始数据,并施以一套为树模型量身定做的特征工程,成功地将论文中抽象的数学定义,转化为了具体的、可用于训练的数值向量。我们现在拥有了一份宝贵的“设计图谱”:它记录了对于各种内容组合,人类设计师是如何分配版面和决定形状的。面板属性推断。我将深入讲解,代码是如何使用LightGBM模型来学习这份图谱的,这与论文中提出的贝叶斯网络方法有何不同,以及为何做出这样的选择。好的,我们继续这篇客观、深入的技术博客。
2025-06-16 01:15:54
684
原创 项目实训技术实现——`Muti.py` 的脱胎换骨:从文本抓取到文档智能的架构演进
在软件项目的生命周期中,有些时刻是微小的增量改进,而另一些时刻则是彻底的革命。我们的 脚本所经历的演进,正属于后者。这个项目最初是一个巧妙但脆弱的PDF信息提取器,如今,它已重生为一个健壮、智能的文档处理引擎。这次转变由一个关键的架构决策驱动:告别使用 直接进行文本抓取的旧世界,全面拥抱由 提供的、AI驱动的结构化文档理解新范式。本文将作为一次深入探索,通过并排对比新旧代码,深度剖析这次升级。我们的目的不仅是展示改了什么,更是要揭示为何这次演进对项目的成功至关重要。这是所有后续改进的基石。旧架构的根本
2025-06-08 18:35:30
102
原创 项目实训技术实现——智能提取器的解剖学——深入探究如何利用Docling将论文图表与文本上下文精确关联
是一个开源、模块化、高保真的文档转换工具包,旨在将非结构化文档(如 PDF、图像、HTML 等)准确、高效地转换为结构化格式(如 JSON、、HTML)。它专为解决当前文档转换工具面临的幻觉问题、高计算开销与本地部署困难而设计,适用于检索增强生成(RAG)、信息提取、模型训练等任务。
2025-05-25 15:22:42
326
原创 山东大学软件学院——高级程序设计期末复习
不要像笔者一样,大一不好好学习考的烂,大三又在找补在Java中,这是因为余数的符号与被除数相同。静态方法中不能有this和super静态方法属于类,而不是实例,因此不能使用this和super权限修饰符只能修饰成员变量和成员方法,权限修饰符(如publicprivate接口中可以有具体的成员方法Java中只允许父类引用指向子类对象将子类对象强转为父类对象将父类对象强转为子类对象时会报错静态方法的重写和多态静态方法属于类,而不是类的实例,因此静态方法不能像实例方法那样被重写。
2025-05-21 16:58:11
722
原创 山东大学计算机图形学期末复习完结篇下——19历年题
对粗糙或低分辨率网格进行几何平滑,提升曲面连续性。:平滑顶点位置,抑制噪声,改善网格外观。对于每条边界,计算边的法向量。:任意线段裁剪于凸多边形窗口。
2025-05-20 14:51:58
961
原创 山东大学计算机图形学期末复习完结篇上——24历年题
RcosθI1−cosθv⃗v⃗Tsinθv⃗×RcosθI1−cosθvvTsinθv×这就是从向量形式 → 矩阵形式的全过程推导。
2025-05-20 14:50:52
1078
原创 山东大学计算机图形学期末复习15——CG15
颜色缓冲区(Color Buffer):存储每个像素的颜色值。深度缓冲区(Depth Buffer):存储每个像素的深度信息,用于深度测试。模板缓冲区(Stencil Buffer):用于复杂的像素操作,如遮罩和多重渲染通道控制。累积缓冲区(Accumulation Buffer):用于图像的累积操作,如抗锯齿、模糊等。辅助缓冲区(Auxiliary Buffer):提供额外的渲染目标。覆盖缓冲区(Overlay Buffer):用于显示覆盖内容,如HUD界面。
2025-05-20 14:43:22
1101
原创 山东大学计算机图形学期末复习14——CG14下
参数化是指将一个三维表面(如模型的网格)映射到二维纹理空间目的是赋予每个顶点一个纹理坐标uv∈012uv∈012;使得 2D 纹理图像能正确贴合在 3D 表面上;类似于将一张贴纸展开、包裹在物体表面。
2025-05-19 17:00:38
913
原创 山东大学计算机图形学期末复习13——CG14上
圆柱是一个高度为hhh、底面半径为rrr的三维物体。设纹理坐标为uv(u, v)uv,其中:uuu控制圆周方向(即0≤u≤10≤u≤1对应0≤θ≤2π0≤θ≤2πvvv控制竖直方向(0≤v≤10≤v≤1对应底到顶)。我们把二维纹理uv(u, v)uv映射到圆柱的三维表面点xyz(x, y, z)xyz上。
2025-05-19 16:58:40
786
原创 山东大学计算机图形学期末复习12——CG13下
在图形学中,连续几何体(如直线、边缘、多边形)在映射到离散像素网格时,由于采样不充分,边缘表现为阶梯状,这就是锯齿。原因:光栅化采用“点采样”,例如对每个像素中心采样一次,无法反映线条/边缘实际覆盖的范围。特别是斜线、多边形边缘容易暴露这种“走格子”效果。
2025-05-18 16:01:06
611
原创 山东大学计算机图形学期末复习11——CG13上
在三维场景中,多个物体可能重叠观察者只能看到最前面的面所以需要消除被遮挡的“隐藏面”,避免不必要的渲染。
2025-05-18 15:59:13
829
原创 山东大学计算机图形学期末复习10——CG12下
光栅化是把几何图形(如线段、三角形等)转换为**像素点(像素/片段)**的过程,是从“数学描述”到“图像像素”的关键步骤。举例:一条直线 y = x + 1,在数学上是连续的,我们要决定哪些像素该被“点亮”来表示这条直线。d2Δy−Δx(初始值)如果d0选右边像素⇒d←d2Δy否则,选右上像素⇒d←d2Δy−Δxd = 2\Delta y - \Delta x \quad \text{(初始值)} \\
2025-05-17 14:52:41
599
原创 山东大学计算机图形学期末复习9——CG12上
return nil;// 不可见,进入在离开之后else// 可见线段部分如果进入点tststs比离开点tetete晚,说明线段只在外部滑过,没有进入 => 剪裁结果为空。否则,返回的是裁剪后保留在线段上的区间tste[ts, te]tstePtsP0tsP1−P0PteP0teP1−P0PtsP0tsP1−P0PteP0teP1−P0。
2025-05-17 14:50:31
929
原创 山东大学计算机图形学期末复习8——CG11下
顶点法向量:首先计算每个顶点的法向量。边法向量插值:在每条边的每个点上,基于顶点的法向量进行插值。内部法向量插值:在多边形内部的每个点上,基于相邻边的法向量进行插值。光照计算:利用插值后的法向量,使用Phong光照模型来计算每个点的颜色。曲面细分(Subdivision Surface)是计算机图形学中的一种方法,用于将粗糙的多边形网格细化为平滑的曲面。细分算法通过递归地分割网格中的每个多边形,逐步使曲面变得光滑,最终形成一个极限曲面。Catmull-Clark细分算法。
2025-05-15 16:46:36
833
原创 山东大学计算机图形学期末复习7——CG11上
理想反射体是指那些能够完美反射入射光线的表面,反射光线的方向完全符合反射定律,即反射角等于入射角。光泽度系数α\alphaα控制镜面反射高光的锐利程度。较小的α\alphaα值会产生较大的、高光不那么锐利的反射,而较大的α\alphaα值则会产生更小且更锐利的高光。这个系数对物体表面的光滑度和反射特性有着显著影响。
2025-05-15 16:43:19
696
原创 山东大学计算机图形学期末复习整理5——CG10上
副法线(Binormal)是一个向量,与切线 T 和法线 N 都垂直,它保证了一个右手坐标系的存在。BT×NBT×NBCu×Cuu∥Cu×Cuu∥B∥Cu×Cuu∥Cu×Cuu它本质上描述了曲线弯曲所在的平面法向量。网格质量描述了一个几何模型的离散表示(通常是三角网格)在几何、光滑性、拓扑规则性和可视性等方面的优劣。表面平滑;形状还原真实;无严重畸变;可支持高质量渲染或数值模拟。定义。
2025-05-15 16:38:15
984
原创 山东大学计算机图形学期末复习4——CG06至CG09
谢尔宾斯基垫片(Sierpiński Gasket)**谢尔宾斯基垫片(Sierpiński Gasket / Triangle)*是由波兰数学家 **Wacław Sierpiński** 在 1915 年提出的一种*二维分形结构。它具有以下特点:随机算法生成谢尔宾斯基垫片初始设置:迭代步骤(随机过程):重复如下步骤 NNN 次:从 pip_ipi 出发(初始为 p0p_0p0)随机选择一个顶点(v₁, v₂, v₃ 中的一个)计算这个顶点与当前点 pip_ipi 的中点,得到新点 pi+1p_{i
2025-05-15 15:34:15
689
原创 山东大学计算机图形学期末复习2——CG01至CG03
*光线追踪:**通过追踪从光源发出的光线,计算哪些光线进入相机镜头来形成图像。:输入设备触发事件,程序响应事件。用户可以随时触发多个输入设备,每个触发生成一个事件,事件的测量值放入事件队列,用户程序可以检查事件队列。控制点(Control Points):一系列的点,用来影响曲线的形状,但通常不位于曲线上。权重(Weights):与每个控制点关联的实数,影响曲线与控制点的接近程度。**物理成像系统:**相机,显微镜,望远镜,人类视觉系统等。**图像形成的元素:**物体,观察者,光源,材质属性。
2025-05-14 17:18:36
1130
原创 项目实训技术实现——深度剖析:为何用LLaVA生成海报布局的尝试,最终以失败告终?
等等。当元素数量上升时,对布局的精确控制要求也呈指数级增长。我们天真地以为,只要在 Prompt 中明确“不要重叠”,模型就能理解并遵守。但事实证明,LLM 在处理复杂的空间关系时,表现得更像一个随性的艺术家,而不是一个严谨的工程师。
2025-05-12 11:22:19
145
原创 项目实训技术实现——用于高质量文本摘要生成阶段的muti-agent debate
发现这项技术可以在不进行微调的情况下很好优化模型生成的内容。核心思想是使用多个代理(agents)协作求解问题,并通过多轮(rounds)迭代优化答案。每个代理都会相互参考其他代理的答案,以提高解题质量。
2025-03-24 17:22:34
501
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人