🌟个人主页:落叶
🌟当前专栏:机器学习专栏
目录
1.引言
强化学习作为机器学习领域的一个重要分支,在近年来取得了巨大的发展。它专注于智能体如何在环境中通过不断试错来学习最优策略,以最大化长期累积奖励。从游戏玩家长期称霸棋类游戏到自动驾驶汽车在复杂路况下的自主决策,强化学习的应用场景不断拓展并深刻改变着多个领域的发展格局。在本文中,我们将深入探讨强化学习的核心概念、常见算法,并通过代码示例来展示其实际应用。
2.强化学习基础概念
(一)智能体与环境
在强化学习中,智能体是能够感知环境并采取行动的实体,而环境则是智能体所处的外部世界,智能体与环境之间通过交互来实现学习过程。例如,在一个简单的迷宫游戏中,智能体可以是一个试图找到出口的虚拟角色,而迷宫及其内部的障碍物、出口等构成了环境。
(二)状态、动作与奖励
- 状态(State):是对环境在某一时刻的完整描述,它包含了智能体做出决策所需的所有信息。以迷宫游戏为例,迷宫中每个格子的位置信息、是否有障碍物、出口的位置等都可以是状态的一部分。
- 动作(Action):智能体在给定状态下能够采取的操作。在迷宫游戏中,智能体可能的动作包括向上、向下、向左、向右移动等。
- 奖励(Reward):环境对智能体采取动作后的反馈,用于引导智能体学习到最优策略。当智能体在迷宫中朝着出口移动时,可能会得到一个较小的正向奖励;如果成功到达出口,则会得到一个较大的正向奖励;而如果撞到障碍物,则会得到一个负向奖励。三、Q - Learning 算法
3.Q - Learning 算法
(一)算法原理
Q - Learning 是一种基于值函数的强化学习算法,其核心是学习一个动作价值函数 Q (s, a),表示智能体在状态 s 下采取动作 a 后所能获得的期望累积奖励。算法通过不断迭代更新 Q 值来逼近最优策略。在每次迭代中,智能体根据当前状态 s 选择一个动作 a,执行该动作后进入新的状态 s',并获得奖励 r。然后根据以下公式更新 Q 值:
(二)代码示例
以下是一个简单的 Q - Learning 算法实现的python代码,用于解决一个简化版的迷宫问题。假设迷宫是一个 4x4 的网格,智能体从左上角出发,目标是到达右下角。
import numpy as np
# 定义迷宫的大小
maze_size = 4
# 定义动作空间:0 - 上,1 - 下,