目录
前言
当谈到数据可视化时,Python是一个非常强大的工具。Python有很多可视化库,其中最流行的是 Matplotlib和Seaborn。除此之外,还有—些其他的可视化库,如Plotly、Bokeh 和Pyecharts等。在本篇博客中,我们将重点介绍Pyecharts,因为它提供了丰富的图表类型和配置选项,可以帮助我们轻松地创建出好看的数据可视化图表。
本篇博客仅供参考,更多的是自己的学习笔记,希望可以对其他人有帮助。
一、安装Pyecharts
Pyecharts是一个基于JavaScript的可视化库,它提供了各种类型的图表,包括折线图、散点图、柱状图、饼图、地图、关系图等等。
Pyecharts的优点是易于使用,可以快速创建好看的图表。
在使用Pyecharts时,需要安装Pyecharts库和其依赖项,可以使用pip命令来安装Pyecharts
pip install pyecharts
我一般在Anaconda Prompt里安装
安装完之后,可以直接在Anaconda Prompt里查看是否安装成功和版本号
也可以使用以下命令来检查Pyecharts是否安装成功,如果输出了版本号,则说明安装成功
import pyecharts
print(pyecharts.__version__)
二、代码示例
1.导入Pyecharts
在Pyecharts代码中,需要导入Pycharts库
from pyecharts.charts import *
from pyecharts import options as opts
2.导入表格
在导入表格前,需要导入Pandas库,没有的可以使用pip命令来安装Pandas
pip install pandas
# 导入所需的库
import pandas as pd
# 导入表格
data = pd.read_excel('面包牛奶销量.xlsx')
# 查看表格
data
表格数据:
3.数据处理
# 数据处理
dates = data['日期'].tolist()
milk_sales = data['牛奶'].tolist()
bread_sales = data['面包'].tolist()
使用Pandas库中的tolist()函数将“日期”、“面包”和“牛奶”三列数据转换为Python列表,以便后续使用。
4.生成柱状图
在Pyecahrts中,可以使用不同的类来创建不同类型的图表。以下是一些常用的类:
-Line:用于创建折线图
-Bar:用于创建柱状图
-Pie:用于创建饼图
-Scatter:用于创建散点图
-Map:用于创建地图
以下是一个简单的例子,展示如何使用Pyecharts创建一个柱状图:
# 生成柱形图
bar = (
Bar()
.add_xaxis(dates)
.add_yaxis('牛奶', milk_sales)
.add_yaxis('面包', bread_sales)
.set_global_opts(title_opts=opts.TitleOpts(title='牛奶和面包销量对比'))
)
在这段代码中,使用了Pyecharts库中的Bar()函数创建了一个柱形图对象,并使用add_xaxis()函数将“日期”列表作为X轴数据,使用add_yaxis()函数将“牛奶”和“面包”作为列表分别作为两个Y轴函数。最后使用set_global_opts()函数设置了图表的标题。
5.图表展示
# 展示图表
# bar.render()
# 在Notebook中展示
bar.render_notebook()
在这段代码中,使用了Pyecharts库中的render_notebook()函数将生成的柱形图渲染到Jupyter Notebook中。这个函数可以将图表嵌入到Notebook中,方便我们在Notebook中查看和分析数据。如果想将图表保存为一个HTML文件,可以注释掉bar.render_notebook(