- 博客(97)
- 收藏
- 关注
原创 FastAPI框架的10个重要知识点总结
1. 数据验证采用Pydantic实现自动化类型转换和复杂校验,支持嵌套模型和自定义验证器;2. 文档系统自动生成交互式API文档(Swagger/ReDoc);3. 依赖注入机制简化共享逻辑复用;4. 异步支持提升并发性能;5. 完善的中间件、异常处理和认证授权体系。该框架通过Starlette底层优化和Uvicorn部署支持,展现出媲美Go/Node.js的高性能特性,成为现代Python Web开发的优选方案。
2025-06-21 21:49:01
485
原创 时间序列预测、分类 | 图神经网络开源代码分享(上)
本文系统梳理了图神经网络(GNN)在时间序列预测、分类等任务中的最新研究进展。GNN通过构建节点和边的关系网络,能够有效捕捉时间序列中复杂的时空依赖关系:在多变量序列中建模变量间的相互影响,在时间维度上分析动态演化规律。文章从三个维度详细介绍了现有方法:1)空间依赖建模(谱GNN、空间GNN及混合方法);2)时间依赖建模(循环模型、卷积模型、注意力机制等);3)预测架构融合(离散与连续模型)。同时提供了多个典型模型的论文链接和开源代码资源。
2025-06-21 14:53:54
648
原创 如何使用 neptune.ai 优化模型训练期间的 GPU 使用率
GPU性能优化是深度学习训练的关键环节。GPU利用率、内存占用和功耗是评估性能的核心指标。通过混合精度训练、批次大小调整和数据流水线优化可以显著提升GPU效能。研究显示,不同深度学习框架的GPU利用率存在明显差异。使用Neptune等工具监控资源使用情况能够有效识别瓶颈,Brainly案例证明优化数据预处理流程可将GPU利用率从25%提升至更高水平。建议开发者关注内存使用、采用混合精度、分析CPU/GPU负载平衡,并系统评估各优化措施的实际效果。
2025-06-20 19:13:00
756
原创 Hugging Face 预训练模型:找到最适合你任务的模型
介绍了 Hugging Face 预训练模型在解决机器学习问题时的优势,其 2017 年上线后推出的 Transformers 库及 NLP 资源让高质量 NLP 模型更易使用。它专注于 NLP 任务,模型能理解语义和语境。博客还介绍了模型选择前要明确用例,可通过其平台筛选模型,以及设置环境的方法,还列举了支持的基本 NLP 任务,阐述了 Transformer 架构和 Hugging Face 的应用,最后以创建英德翻译器为例展示了模型使用、微调及评估过程。
2025-06-20 16:14:42
1016
原创 隐语杯--医疗大模型隐私微调竞赛全攻略:思路、代码与案例解析
本次医疗大模型隐私微调竞赛聚焦医疗AI领域的核心矛盾——模型精度与数据隐私的平衡。竞赛提供4万条医疗对话训练数据及两种验证集,要求参赛者在微调过程中兼顾下游任务精度和隐私保护。通过LoRA等高效微调方法减少计算资源消耗,结合数据匿名化、差分隐私和对抗训练等技术防止模型记忆敏感信息。示例代码展示了从数据处理到模型训练的全流程实现,包括隐私保护评估机制。参考案例(如约翰霍普金斯大学的差分隐私应用)验证了技术可行性。解决方案需在医疗语义理解、隐私风险量化等方面持续优化,推动医疗AI在隐私合规前提下落地应用。
2025-06-19 14:31:43
462
原创 注意力机制、自注意力机制、多头注意力机制、通道注意力机制、空间注意力机制超详细讲解
本文系统梳理了注意力机制在深度学习中的演进与应用。从2017年Transformer的突破性成果切入,详细解析了自注意力机制的计算流程及其在自然语言处理中的优势;继而阐述了多头注意力通过并行视角增强特征捕获能力的原理。在计算机视觉领域,重点剖析了通道注意力(SENet、ECA)和空间注意力(CBAM、STN)的技术特点,展示了如何通过权重分配聚焦关键信息。文章还对比了不同注意力机制的适用场景,如通道注意力筛选语义特征,空间注意力定位关键区域。
2025-06-18 21:55:27
1353
原创 一文搞清楚如何使用 LoRA 微调(LLM)
LoRA(低秩自适应)是一种高效的大型语言模型微调技术,通过仅调整少量关键参数而非全模型实现任务适配。本文演示了使用LoRA微调Gemma-2-9b-it模型生成名言标签的完整流程:1) 安装PEFT等库并加载8位量化模型;2) 冻结模型参数并注入LoRA适配器;3) 配置低秩矩阵参数(r=16)和注意力目标层;4) 预处理数据集并启动高效训练;5) 测试推理效果并分享轻量适配器。实验表明,LoRA只需训练原模型0.1%的参数即可获得优秀性能,大幅降低了计算资源需求。该方法通用性强,适用于各类大语言模型
2025-06-18 15:28:01
1026
原创 讲透 RNN 到 Transformer !!!
本文探讨了深度学习在序列数据处理中的演进历程,从RNN到Transformer的技术突破。RNN通过循环连接解决了序列时序依赖问题,但存在顺序处理效率低、长距离依赖难以捕捉等局限。Attention机制的引入打破了RNN的局限性,实现了全局信息交互。Transformer在此基础上完全摒弃循环结构,通过自注意力机制实现了并行计算和高效的长序列处理,其核心创新包括多头注意力、位置编码等模块。文章通过一个两位数加法任务案例,对比展示了RNN和Transformer的具体实现差异,突出了Transformer在结
2025-06-17 18:49:42
916
原创 Pandas中merge、concat、join 区别 !!
详细解释了Pandas提供了三种数据合并方法:merge基于键连接数据(类似SQL JOIN),concat沿轴堆叠对象(无视连接键),join基于索引或列合并。merge最灵活但性能较差,concat适用于相同结构数据的高效堆叠,join擅长索引对齐的快速合并。实际应用中应根据数据结构、连接需求和性能考虑选择合适方法:复杂键连接用merge,简单堆叠用concat,索引对齐用join。优化技巧包括设置索引、过滤数据、一次合并等,合并时可通过suffixes处理重复列名。掌握三者差异可提升数据处理效率。
2025-06-17 16:11:31
1047
原创 PDF转Markdown基准测试
本文对比评测了5种PDF转Markdown工具的性能表现。测试采用结构化基准文件,重点评估格式保留、语义转换质量及处理效率。结果显示:PyMuPDF4LLM速度最快但表格处理不佳;ChatGPT-4o转换质量最佳但响应较慢;marker表格解析精准但依赖GPU加速;Docling表现不稳定;MarkItDown仅输出纯文本。实验证明,PDF的非结构化特性导致传统提取方法存在格式丢失问题,而Markdown的结构化优势能显著提升LLM处理效果,在RAG系统中使检索准确率提升27%,人工校对效率提高40%。
2025-06-14 21:59:02
905
1
原创 AReaL-boba²:首个全异步强化学习训练系统它来了!!
清华大学与蚂蚁技术研究院联合开发的AReaL-boba²强化学习系统,实现了从同步到全异步训练范式的革新。该系统通过三层技术重构:1)异步训练引擎解耦数据生成与参数更新,GPU利用率提升至78%-89%;2)通信优化使跨节点延迟降低62%;3)显存管理策略减少32B模型显存碎片至11%。在代码任务中,14B模型在LiveCodeBench达到69.1分SOTA性能,训练效率提升2.77倍。系统支持多轮交互训练,通过对话历史缓冲区和动态策略更新机制
2025-06-14 14:23:37
1025
原创 讲透Transformer的5大核心优势 !!
Transformer凭借五大核心优势成为近十年最具影响力的模型架构。首先,其自注意力机制实现了高度并行计算,显著提升处理效率。其次,模型能直接捕捉序列中的长程依赖关系,优于传统RNN和CNN。第三,模块化设计带来强大可扩展性,支持参数和数据规模持续扩张。第四,通用序列处理能力使其成功应用于文本、图像、音频等多模态场景。最后,端到端学习机制简化了训练流程,实现信息的最优传播路径。这些优势源于Transformer对信息流动方式的革命性重构,使其成为推动AI技
2025-06-13 15:44:33
618
原创 Python数据分析库 Pandas 四十个高频操作!!!
本文总结了40个Pandas数据处理的实用技巧,涵盖数据读取、预览、清洗、转换、聚合等全流程操作。核心功能包括:多格式数据读取(CSV/Excel/JSON等)、基础数据查看(head/info/describe)、行列选择与条件筛选、缺失值处理、排序与分组聚合、数据合并与导出。高级技巧涉及异常值检测(IQR法)、时间序列处理、内存优化、矢量化运算、大数据分块处理以及可视化辅助分析(热力图/缺失值矩阵)。特别强调了性能优化方法如延迟计算、类型转换,并提供了调试与内存报告工具。
2025-06-13 13:54:35
328
原创 Transformer 与 XGBoost 协同优化的时间序列建模
本文提出一种结合Transformer与XGBoost的时间序列协同建模方法。Transformer通过自注意力机制捕捉序列的长期依赖关系,XGBoost则专注于拟合Transformer的预测残差,捕捉非线性细节。模型采用分阶段训练:先预训练Transformer提取时序特征,再用其输出训练XGBoost,最后可选联合微调。实验表明,该方法能有效提升预测精度,误差分析显示预测值与实际值趋势吻合良好。文章还提供了参数优化建议和调参流程,案例为复杂时间序列预测任务提供了有效的解决方案。
2025-06-12 16:22:07
891
原创 只用几十行PyTorch代码让GPU利用率猛涨!
摘要:北京大学校友张天远团队提出LaCT模型架构,通过大块更新策略(2000-100万tokens)显著提升GPU利用率至70%。该架构结合窗口注意力与大块测试时训练(LaCT),以无序集处理块内tokens并捕获局部依赖,增强并行性。实验表明,LaCT在百万级tokens的跨模态任务(如新视图合成、视频生成)中优于3D高斯泼溅等技术,且显存占用减少60%。开源代码显示其硬件效率突破(算力利用率65%-82%),为长上下文建模提供新范式。未来可拓展至动态块调整与多模态联合建模。
2025-06-11 13:43:15
850
原创 统计学核心概念与现实应用精解(偏机器学习)
深入浅出地讲解了统计学的核心概念及其应用。统计学主要围绕概率分布和期望展开,概率分布描述随机变量的可能取值及其可能性,期望则是加权平均值,反映长期平均结果。文章详细介绍了离散和连续随机变量的概率质量函数(PMF)和概率密度函数(PDF),累积分布函数(CDF),以及联合分布与边缘分布的关系。在统计学的两大学派中,频率派通过假设检验和p值进行决策,适用于可重复事件;贝叶斯派则结合先验概率和似然函数更新信念,适用于唯一事件。似然函数作为数据与参数之间的桥梁,通过最大似然估计(MLE)推断参数。统计学方法如假设检
2025-06-10 16:39:13
1255
原创 L1和L2核心区别 !!--part 2
本文深入探讨了 L1 和 L2 正则化的核心区别,及其在机器学习模型优化中的应用。L1 正则化通过产生稀疏解实现特征选择,适用于高维稀疏数据;L2 正则化则通过收缩系数提升模型稳定性,适合处理多重共线性问题。Elastic Net 结合两者优势,兼顾特征选择和模型稳定性。正则化通过限制模型复杂度,有效缓解过拟合,提升泛化能力。从优化角度看,L1 导致的非光滑问题需要特殊算法解决。通过实验和图像对比,直观展示了不同正则化方法在特征系数、预测误差等方面的表现差异。
2025-06-09 15:27:13
1131
原创 彻底讲透,L1和L2核心区别 !!
本文通过代码和实验深入剖析了L1正则化(Lasso)和L2正则化(Ridge)的区别。L1正则化约束区域为菱形,易与损失等高线尖角相切,使部分参数为零,实现特征选择;L2正则化约束区域为圆形,使参数均匀收缩。实验中,对于只有3个真正有用特征的数据,Lasso将不重要特征系数压缩为零,而Ridge只是将系数收缩。L1适合特征选择,L2适合系数稳定化,Elastic Net结合两者优势。
2025-06-08 19:20:22
576
原创 XGBoost时间序列预测之-未来销量的预测
本文介绍了基于XGBoost的时间序列销售预测模型构建过程。从问题定义与数据特征分析出发,阐述了业务目标、数据结构及技术挑战。接着解析XGBoost的核心原理,包括目标函数优化与加法训练策略。在特征工程部分,重点讲解滞后特征、滚动窗口特征等构建方法。模型架构部分涵盖特征矩阵构建、训练与预测流程。最后探讨模型优化、超参数调优及结合深度学习的拓展方案,为读者提供销售预测模型的实用指南。
2025-06-07 15:42:14
924
原创 50个pytorch的超强操作!!
本文全面深入地介绍了 PyTorch 的各项功能与操作,从基础张量操作如创建、形状变换、拼接到高级训练策略如 GPU 加速、分布式训练,再到模型构建、训练及评估,提供了详尽的讲解。涵盖了数据加载、处理、模型保存、加载以及多种优化技术,包括混合精度训练、模型剪枝和自动微分等,为读者呈现了一个全面的 PyTorch 学习与应用指南,帮助读者系统掌握 PyTorch 在深度学习中的广泛应用。
2025-06-06 23:33:32
1527
原创 深入浅出:Transformer 输入输出嵌入层的词向量映射与线性变换
本文围绕 Transformer 模型架构展开,重点解析其核心组件原理与复制任务实践。输入嵌入层通过嵌入矩阵将文本转换为向量,结合位置编码赋予序列顺序信息;自注意力机制经线性变换生成查询、键、值向量,计算注意力权重实现上下文感知;输出嵌入层则将向量映射回词汇表。通过复制任务实验,借助损失曲线、嵌入可视化、预测对比及注意力热力图验证模型有效性,结果表明模型能有效捕捉位置与语义信息,注意力机制聚焦自身位置,验证了 Transformer 基础架构在序列任务中的可行性,为复杂 NLP 任务提供理论与实践支撑。
2025-06-06 13:59:01
1036
原创 ReLU 激活函数:重大缺陷一去不复返!
上述替代函数均具有平滑特性(如连续可导),通过 FGI 机制注入梯度后,可无缝替代传统 ReLU,使得网络在负激活区域仍能进行有效梯度传播,从而提升深层网络的训练效率与表达能力(如图 8 所示,不同替代函数在负区域的梯度曲线差异显著,但均能通过 SUGAR 框架实现梯度注入)。这些函数通过为负预激活值引入非零激活,提供了不同的权衡。具体而言,通过 ** 前向梯度注入(FGI)** 机制,将替代函数的梯度信息直接注入网络的前向传播过程,从而在保持 ReLU 非线性特性的同时,避免因负输入导致的梯度消失问题。
2025-06-05 23:30:04
1103
1
原创 SVM超详细原理总结
支持向量机(SVM)是一种基于最大间隔分类的机器学习算法,适用于线性和非线性数据。本文系统阐述了SVM的核心原理:线性可分时的硬间隔优化、非线性数据的核方法映射(如RBF核),以及现实场景中的软间隔正则化(C参数控制)。通过鸢尾花数据集案例,展示了SVM的标准化预处理、网格搜索调参(C和gamma)及决策边界可视化方法,并分析了参数对模型性能的影响。SVM的关键优势在于最大化间隔带来的强泛化能力,但其性能依赖于核函数选择和参数调优,适用于中等规模的高维数据分类任务。
2025-06-04 19:01:39
730
原创 Adam、SGD、RMSprop优化器全面对比 !!
本文从对比分析的方向对深度学习中三种经典优化器(SGD、RMSprop、Adam)的性能特点进行了详细解释。比如SGD简单但收敛慢,适合简单模型;RMSprop通过自适应学习率有效处理梯度波动,在RNN中表现优异;Adam结合动量与自适应机制,收敛速度快且稳定,成为复杂网络的首选。实验显示,Adam和RMSprop在验证集损失和梯度控制方面均优于SGD,其中Adam表现出更集中的参数分布。建议根据任务复杂度选择优化器:简单任务用SGD,序列数据用RMSprop,复杂网络优先Adam。
2025-06-03 14:17:31
1445
原创 一文让你搞懂深度学习中神经网络的各层结构与功能
本文深入剖析了卷积神经网络(CNN)中卷积层、池化层、归一化层、激活函数、Flatten层和全连接层的原理与作用。卷积层通过局部连接和权重共享高效提取图像特征;池化层降维并保留关键特征;归一化层消除量纲差异,加速收敛;激活函数引入非线性,提升表达能力;Flatten层将多维特征映射为一维向量,连接卷积层与全连接层;全连接层整合特征,实现分类或回归。这些组件协同工作,赋予CNN强大的图像处理能力,广泛应用于分类、检测等任务。
2025-06-02 16:02:19
1230
原创 首个基于统计学的线性注意力机制ToST来了!
加州大学伯克利分校吴梓阳博士团队提出Token Statistics Transformer(ToST)模型,通过创新性的Token统计量自注意力机制(TSSA),将传统Transformer的二次方计算复杂度降至线性。该研究基于最大编码率缩减理论(MCR²)的变分形式,通过白盒架构设计实现高效特征提取,在NLP和CV任务中保持性能同时显著降低资源消耗。实验表明ToST在ImageNet等基准测试中媲美传统Transformer,且在长序列任务中表现出色。这项跨机构合作成果入选ICLR2025,为边缘计算、
2025-05-31 12:54:34
978
原创 详细到用手撕transformer下半部分
完整实现了Transformer的编码器-解码器架构,基于Vaswani等人2017年提出的经典设计。通过模块化构建编码器块、位置编码和训练组件,并利用PyTorch Lightning框架整合训练流程。在数字序列反转任务测试中,模型表现优异,验证了Transformer处理长距离依赖的能力。文章详细解析了多头注意力机制、残差连接等核心设计,并讨论了不同架构变体(如BERT、GPT)的应用场景。实现过程涵盖从底层注意力计算到完整模型训练的完整技术链,为理解Transformer工作机制提供了实践参考。
2025-05-30 13:43:20
1001
原创 详细到用手撕transformer上半部分
本文聚焦 Transformer 架构核心 —— 自注意力机制及多头注意力机制。自注意力机制通过查询(Q)、键(K)、值(V)运算,基于相似性对输入加权求和,捕捉上下文信息。为处理复杂需求,扩展出多头注意力机制,利用多个查询 - 键 - 值三元组,使模型能同时关注序列不同方面,各头输出经拼接与融合增强表达力。还介绍了相关代码实现及多头注意力机制输入的置换等变性,强调介绍了位置编码恢复序列顺序信息的必要性。
2025-05-29 16:44:10
1022
原创 回归算法模型之线性回归
从讲解线性回归的原理到整个算法模型的完整流程,本文是以从数据到模型的 6 大核心步骤来介绍的。最后用一个经典的用线性回归预测房价的完整的案例来给读者们增加对线性回归的应用的思想。
2025-05-28 23:22:21
1143
原创 Transformer不同位置编码方式的几何特征比较
探讨了Transformer模型中不同位置编码方式的几何特征与性能差异。此外也详细解析了正余弦位置编码的周期性特征、可学习位置编码的灵活性、相对位置编码的距离建模能力以及旋转位置编码的几何不变性。通过PyTorch实现的对比实验展示了各编码方式在高维空间的可视化分布和训练动态。实验结果表明,正弦编码具有稳定的周期性结构,而可学习编码在数据充足时表现更优。文章还提出了混合编码等优化方案,并提供了系统化的调参流程,为Transformer位置编码的选择和优化提供了实践指导。
2025-05-27 15:10:36
814
原创 CNN + RNN的最强组合!!!
系统介绍了CNN与RNN组合模型的核心优势。同时也分别介绍了CNN的优势,RNN的优势。然后还通过案例演示了CNN-LSTM网络在目标位置预测任务中的实现过程,包括数据构建、模型架构设计及训练优化策略。
2025-05-26 14:51:23
814
原创 归一化 超全总结!!
本文系统介绍了机器学习中的归一化技术,包括最小-最大归一化、标准化、小数定标归一化、均值归一化和单位长度归一化。这些方法通过调整特征尺度,有效解决数据尺度差异问题,提升算法性能。文章详细解析了各类归一化的数学原理、适用场景及实现代码,特别强调了归一化对梯度下降类算法(如神经网络)的重要性,以及如何根据数据类型选择合适方法(如Min-Max用于图像,Z-score用于金融数据)。同时指出树模型等对尺度不敏感的算法无需归一化,提醒注意避免数据泄漏。通过可视化对比,展示了归一化对模型精度和稳定性的提升效果。
2025-05-24 20:59:47
1226
原创 详谈为什么大多数交叉验证可视化是错误的(如何修复它们)
形象的概述了交叉验证是什么,以及目前交叉验证图可视化的问题,还提出了更好的方法去可视化交叉验证以及解释了为什么这种方法更好。
2025-05-24 13:29:23
888
原创 数据挖掘算法大汇总
解释了目前几乎所有的数据挖掘经典算法,并附代码。涵盖:18 大算法涵盖关联规则(如 Apriori、FP-Tree)、分类(如 CART、KNN)、聚类(如 KMeans、BIRCH)、集成学习(如 AdaBoost)等任务,其他算法包括蚁群算法、贝叶斯网络、DBSCAN 等。
2025-05-23 22:50:37
1834
原创 基于 ARIMA 与贝叶斯回归的时间序列分析:结合趋势季节性与不确定性量化(附 PyTorch 变分贝叶斯实现)
结合ARIMA模型与贝叶斯回归进行时间序列预测,还对不确定性分析的方法进行阐述。比如解释了ARIMA模型擅长捕捉时间序列中的趋势和周期性,但其预测结果通常为点估计,难以量化不确定性。贝叶斯回归通过概率分布描述参数的不确定性,能够结合先验知识和观测数据,提供预测的置信区间。将两者结合,ARIMA用于建模时间序列的结构化特征,贝叶斯回归则处理模型参数的不确定性,从而提升预测精度并量化预测的不确定性。文章还通过虚拟数据案例,展示了从数据生成、模型训练到预测及不确定性分析的完整流程,并提供了代码实现和可视化分析。
2025-05-23 14:00:19
1251
原创 深度学习之-目标检测算法汇总(超全面)
概括了目前YOLO目标检测模型从YOLOv1到YOLOv12的演进,并介绍了多种改进方法。这些改进包括引入注意力机制、多尺度特征融合、模型轻量化、与其他新技术结合(如Mamba模型、扩散模型等),以及优化损失函数和训练策略。文章还探讨了YOLO在农业、医疗、交通等领域的应用,并展示了其在复杂场景中的检测性能提升。此外,文章介绍了基于Transformer和MLP的目标检测改进方法,以及如何将大模型(如SAM)应用于目标检测任务。这些改进不仅提高了检测精度,还增强了模型的实时性和适应性。
2025-05-22 23:28:02
2057
原创 目前最详细的模型校准讲解:面向初学者(带代码示例的可视化指南)
首先对校准做了详细的解释,然后以天气预测高尔夫球活动的数据集为例,展示了如何训练和评估四种分类模型(KNN、伯努利朴素贝叶斯、逻辑回归和MLP)的校准性能。结果表明,KNN模型在校准方面表现最佳,而其他模型在不同程度上存在校准问题。理解并改进模型校准对于构建可靠的机器学习系统至关重要。
2025-05-22 13:00:44
1107
原创 时间序列预测的迁移学习
探讨迁移学习在时间序列预测中的应用,借助开源 Darts 库实现模型训练与预测。讨论传统机器学习方法在时间序列预测中存在数据依赖和训练成本问题,用迁移学习可在多样化数据集上训练模型后,直接用于不同数据集预测,兼具元学习特性,推理时无需额外训练,适合低推理时间场景。此外,还通过 Darts 库演示单变量序列预测,展示其处理多变量、概率预测及结合外部数据的能力,提供关键代码片段与复现结果的完整笔记本。
2025-05-21 14:45:13
1092
原创 如何微调大型语言模型 (LLM)-一文教会你使用 QLoRA 在自定义数据集上微调LLM
介绍大型语言模型(LLM)微调方法,重点阐述参数高效微调(PEFT)技术,如 LoRA 和 QLoRA,通过冻结大部分参数、仅更新子集来降低计算成本。教程以 QLoRA 微调 Phi-2 模型为例,演示了安装库、加载数据集、预处理、模型配置及训练等步骤,最终通过 ROUGE 指标验证,显示微调后模型性能显著提升,强调微调对优化 LLM 特定任务表现的重要性。
2025-05-20 14:52:18
933
原创 从零开始训练一个CLIP
介绍CLIP多模态模型是上面?以及它的原理。然后通过对比学习将图像和文本映射到同一向量空间。借助 MiniClip 项目演示,利用 Hugging Face Trainer,涵盖模型配置、数据预处理等模块。可加载预训练权重,也可从头训练,用 FAISS 检索评估,还构建 Gradio 界面可视化结果,展现 CLIP 核心训练及应用流程。
2025-05-19 22:59:49
1024
【0 基础也能懂!】系列超市小票 + 奶茶订单:自创5 个生活场景数据集(含脏数据)
2025-03-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人