✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
无人水面艇(USV)的路径跟踪是自主航行的核心任务之一,要求 USV 在风、浪、流等海洋环境干扰下,精确跟踪预设参考路径(如直线、曲线、复杂航迹)。视线(Line-of-Sight, LOS)控制算法因结构简单、计算量小、鲁棒性强,成为 USV 路径跟踪的主流方法之一。与模型预测控制(MPC)等复杂算法相比,LOS 通过模拟 “驾驶员目视瞄准路径” 的行为,计算期望航向角,无需精确动力学模型,特别适合中小型 USV(算力有限)的实时路径跟踪。通过仿真可低成本验证 LOS 算法在不同路径类型、环境干扰下的性能,为实际应用提供参数优化依据。
LOS 控制算法的基本原理与 USV 路径跟踪适配性
LOS 控制算法通过构建 “虚拟目标点” 引导 USV 航向,其核心思想与 USV 的运动特性高度契合,能在复杂环境中实现稳定跟踪。
LOS 算法的核心思想
LOS 算法的本质是将三维路径跟踪转化为航向角控制问题,通过以下步骤实现:
与 USV 路径跟踪的适配性
LOS 控制算法的分类与路径类型适配
LOS 算法需根据参考路径类型(直线、曲线、三维)调整目标点生成策略,不同变体适用于不同场景。
直线路径 LOS 控制
直线路径是最基础的跟踪场景(如港口进出航道),LOS 算法简化为:
曲线路径 LOS 控制
对于曲线路径(如圆弧、航道转弯段),传统 LOS 易因前视距固定导致跟踪偏差,需采用改进算法:
环境干扰补偿的 LOS 变体
USV 路径跟踪 LOS 算法的仿真实现
LOS 算法的仿真需构建 “路径生成 - 环境建模 - 控制执行 - 性能评估” 的闭环流程,通过主流平台验证不同场景下的跟踪效果。
仿真平台与核心模块
仿真实现流程
关键参数对仿真结果的影响
挑战与未来发展方向
未来方向
结论
LOS 控制算法因其简单、高效、鲁棒性强的特性,成为 USV 路径跟踪的理想选择。通过仿真可验证其在直线、曲线路径及环境干扰下的性能,优化前视距、偏差校正系数等关键参数。尽管在急弯跟踪、强干扰下的精度略逊于 MPC,但 LOS 的低计算需求使其更适合中小型 USV。未来,结合智能参数优化、多传感器融合与编队协同技术,LOS 算法将在港口自动化、海洋监测等领域发挥更大作用,推动 USV 路径跟踪的实用化与智能化。
⛳️ 运行结果
🔗 参考文献
[1] 田勇 王丹 彭周华 刘陆.无人水面艇直线航迹跟踪控制器的设计与验证[J].大连海事大学学报, 2015, 41(4):5.
[2] 隋晓丽.水面无人艇航迹控制算法研究[D].大连海事大学,2013.
[3] 陈霄,刘忠,张建强,等.基于改进积分视线导引策略的欠驱动无人水面艇路径跟踪[J].北京航空航天大学学报, 2018, 44(3):11.DOI:10.13700/j.bh.1001-5965.2017.0192.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇