Python — — GPU编程

Python — — GPU编程

要想将Python程序运行在GPU上,我们可以使用numba库或者使用cupy库来实现GPU编程。

壹、numba

Numba 是一个开源的 JIT (Just-In-Time) 编译器,它可以将 Python 代码转换成机器代码以提高性能。Numba 特别适用于需要高性能计算的科学计算和数值计算任务。也就是说可以将python程序编译为机器码,使其可以像c/c++、Java一样快速的运行。同样Numba不仅可以加速 CPU 上的 Python 代码,还可以利用 GPU 进行加速。

安装Numba

pip install numba

一、机器码编程

1. 函数编写:

Numba 的核心功能是 @jit 装饰器,它可以将 Python 函数编译成优化的机器代码。

from numba import jit

@jit(nopython=True)
def my_function(x):
    return x * x

x = 112.0
print(my_function(x))

指定传递参数类型以及返回值类型,nopython表示不使用python编译而直接编译为机器码:

from numba import jit

@jit('float64(float64)', nopython=True)  # 指定输入和输出类型,括号内的是参数类型,括号外的是返回值类型
def my_function(x):
    return x * x

x = 112.0
print(my_function(x))

从 Numba 0.15.1 版本开始,你可以使用 Python 类型注解来指定函数的参数类型:

from numba import jit

@jit
def my_function(x: float) -> float:
    return x * x
2. 使用Numba函数:

使用 Numba 函数,我们可以像使用普通函数一样使用jit修饰过的函数:

result = my_function(10.5)
print(result)  # 输出 110.25

Numba 特别适合于在 NumPy 数组上进行操作。你可以使用 NumPy 数组作为 Numba 函数的参数:

from numba import njit
import numpy as np


@njit
def parallel_function(arr):
    return arr * 2


arr = np.arange(10)
result = parallel_function(arr)
print(result)
3. 使用 Numba 的并行功能:

Numba 提供了并行执行的功能,可以使用 @njit 装饰器来替代 @jit,它会自动并行化循环:

from numba import njit
import numpy as np


@njit
def parallel_function(arr):
    return arr * 2


arr = np.arange(10)
result = parallel_function(arr)
print(result)

二、CUDA编程

1. 引入CUDA 模块:
from numba import cuda
2. 定义 GPU 核函数:

使用 @cuda.jit 装饰器定义 GPU 核函数,这与 CPU 加速中使用的 @jit 类似,但 @cuda.jit 指定了函数将在 GPU 上执行:

@cuda.jit
def gpu_kernel(x, y):
    # 核函数体,使用 CUDA 线程索引进行计算
    
### 如何使用 Python 进行 GPU 编程 #### 使用 PyCUDA 实现 GPU 编程 PyCUDA 是一种用于 CUDAPython 接口,允许开发者通过 Python 脚本来访问 NVIDIA 的并行计算架构。要安装 PyCUDA,可以通过包管理工具完成操作[^1]。一旦安装成功,可以编写简单的 CUDA 内核函数并通过 PyCUDA 执行这些内核。 下面是一个基本的 PyCUDA 示例代码: ```python import pycuda.autoinit import pycuda.driver as drv from pycuda import gpuarray from pycuda.compiler import SourceModule import numpy as np mod = SourceModule(""" __global__ void multiply_them(float *dest, float *a, float *b) { const int i = threadIdx.x; dest[i] = a[i] * b[i]; } """) multiply_them = mod.get_function("multiply_them") a = np.random.randn(4).astype(np.float32) b = np.random.randn(4).astype(np.float32) dest = np.zeros_like(a) multiply_them( drv.Out(dest), drv.In(a), drv.In(b), block=(4,1,1)) print(dest) ``` 此代码展示了如何定义一个 CUDA 内核并将数据传递到 GPU 上执行乘法运算。 #### TensorFlow 和 PyTorch 支持 GPU 加速 对于深度学习领域中的 GPU 编程,TensorFlow 和 PyTorch 提供了强大的支持功能。它们能够简化复杂的矩阵运算过程,并提供内置方法来检测和启用可用的 GPU 设备[^2]。 以下是基于 Tensorflow 的简单示例: ```python import tensorflow as tf # 检查是否有可用的 GPU gpus = tf.config.list_physical_devices('GPU') if gpus: try: # 设置内存增长模式 for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: print(e) with tf.device('/GPU:0'): a = tf.constant([[1.0, 2.0], [3.0, 4.0]]) b = tf.constant([[5.0, 6.0], [7.0, 8.0]]) c = tf.matmul(a, b) print(c.numpy()) ``` 而这是 PyTorch 对应的例子: ```python import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' tensor_a = torch.tensor([1., 2.]).to(device) tensor_b = tensor_a ** 2 print(tensor_b) ``` 上述两个框架均能显著提升涉及大量数值处理的任务性能。 #### NumbaPro 的 `cuda.jit` 装饰器 除了专门针对硬件交互设计的库外,还有像 NumbaPro 这样的解决方案提供了更高层次抽象接口。“`@cuda.jit`”装饰器使得开发人员可以用接近原生 Python 风格书写自定义 CUDA 核心逻辑[^3]。不过需要注意的是,尽管这种做法让程序结构更加直观易懂,但它并不能自动转换已有的 NumPy 程序至 GPU 平台运行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值