17、多阶段动态博弈论方法与基于质量的Web API选择

多阶段动态博弈论方法与基于质量的Web API选择

多阶段动态博弈论在多工作流调度中的应用

在多工作流调度问题中,存在多个优化目标之间的冲突和竞争。为了解决这个问题,我们可以将其构建为一个多阶段动态博弈论模型。

模型构建

基于一系列假设,该问题可以被表述为以下多阶段动态博弈论模型:
- 目标函数
- 最小化 $f_1$(makespan):$Min f_1 = make - span = Max C_{ijpk}$
- 最大化 $f_2$(公平性指标):$Max f_2 = fairness\ index = \frac{(\sum_{i = 1}^{K} ET_{ijpk})^2}{K \cdot \sum_{i = 1}^{K} ET_{ijpk}^2}$
- 最小化 $f_3$(成本):$Min f_3 = cost = \sum_{p = 1}^{m} \sum_{k = 1}^{m_p} \sum_{i = 1}^{n} \sum_{j = 1}^{n_i} (t_{ijpk} - t_{ijpks}) \cdot u_{pk} \cdot x_{ijpk}$
- 约束条件
- $i \in [1, n], j \in [1, n_i], p \in [1, m], k \in [1, m_p]$
- $C_{ijpk} \leq C_{i,j + 1,p,k} - t_{i,j + 1,p,k} - t_{i,j + 1,p,k,s}, C_{ijpk} \geq 0$
- $\sum_{k \in V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值