如何把rplidar /scan存起来 应该存成什么样的格式 后面让python读取/scan 然后进行处理

在 ROS 中保存 `/scan` 数据(来自 RPLIDAR 等激光雷达)通常有两种常用方法:**ROS Bag 文件**(`.bag`)或**转换为文本格式**(如 CSV、JSON)。以下是具体操作步骤和 Python 读取示例:

---

### 方法 1:使用 ROS Bag 直接保存原始数据
#### 1. 记录 `/scan` 话题
通过 `rosbag record` 命令保存实时数据:
```bash
# 启动 ROS 核心
roscore

# 在新终端中运行雷达节点(假设雷达驱动已安装)
roslaunch rplidar_ros rplidar.launch

# 记录 /scan 话题到名为 "lidar_data.bag" 的文件
rosbag record -O lidar_data.bag /scan
```

#### 2. 回放并使用 Python 读取
安装 Python ROS 依赖(若未安装):
```bash
pip install rospkg rosbag pyyaml
```

Python 读取 `.bag` 文件的示例代码:
```python
import rosbag
from sensor_msgs.msg import LaserScan

# 读取 .bag 文件
bag = rosbag.Bag('lidar_data.bag')

# 遍历所有 /scan 消息
for topic, msg, t in bag.read_messages(topics=['/scan']):
    # 提取激光雷达数据
    ranges = msg.ranges          # 距离数组(单位:米)
    angles = [msg.angle_min + i * msg.angle_increment for i in range(len(ranges))]  # 角度数组(弧度)
    # 处理数据(示例:打印第一个点的距离)
    print(f"时间戳: {t.to_sec()}, 第一个点距离: {ranges[0]} 米")

bag.close()
```

---

### 方法 2:保存为 CSV/JSON 格式(更易处理)
#### 1. Python 脚本实时订阅并保存
编写一个 ROS 节点脚本(如 `save_scan.py`):
```python
#!/usr/bin/env python
import rospy
from sensor_msgs.msg import LaserScan
import csv
import time

def scan_callback(msg):
    # 提取数据
    timestamp = msg.header.stamp.to_sec()
    ranges = list(msg.ranges)  # 转为列表
    angles = [msg.angle_min + i * msg.angle_increment for i in range(len(ranges))]
    
    # 保存为 CSV
    with open('scan_data.csv', 'a', newline='') as csvfile:
        writer = csv.writer(csvfile)
        # 写入时间戳和每个点的角度、距离
        for angle, distance in zip(angles, ranges):
            writer.writerow([timestamp, angle, distance])

if __name__ == '__main__':
    rospy.init_node('scan_saver')
    rospy.Subscriber('/scan', LaserScan, scan_callback)
    rospy.spin()
```

#### 2. 运行脚本
```bash
chmod +x save_scan.py
./save_scan.py
```

#### 3. 读取 CSV 并处理
用 Python 读取生成的 `scan_data.csv`:
```python
import pandas as pd

# 读取 CSV
df = pd.read_csv('scan_data.csv', header=None, names=['timestamp', 'angle', 'distance'])

# 示例:过滤无效数据(假设无效值为 0)
df = df[df['distance'] > 0]

# 转换为极坐标点(x, y)
df['x'] = df['distance'] * np.cos(df['angle'])
df['y'] = df['distance'] * np.sin(df['angle'])

print(df.head())
```

---

### 关键说明
1. **数据格式选择**:
   - **ROS Bag**:保留完整的 ROS 消息结构,适合复杂场景或需要回放原始数据。
   - **CSV/JSON**:轻量级、易读,适合直接进行数据分析或机器学习。

2. **LaserScan 消息字段**:
   ```python
   msg.header.stamp    # 时间戳
   msg.angle_min       # 起始角度(弧度)
   msg.angle_max       # 终止角度(弧度)
   msg.angle_increment # 角度分辨率(弧度/点)
   msg.ranges          # 距离数组(单位:米)
   msg.intensities     # 强度数组(可选)
   ```

3. **注意事项**:
   - 激光雷达的无效值通常为 `0` 或 `inf`,需在代码中过滤。
   - 如果数据量较大,CSV 可能效率较低,建议使用二进制格式(如 HDF5)。

如果需要进一步处理(如可视化或实时显示),可以使用 `matplotlib` 或 `ROS RVIZ` 工具。

Python中,Elasticsearch(ES)库通常使用`elasticsearch-py`模块来操作Elasticsearch。当你想要从Elasticsearch查询数据时,`Scan`功能(或者在`Elasticsearch`类中对应地称为`scan()`方法)用于进行分页和流式的数据获取,特别是对于大型索引来说,它非常有效。 `scan()`方法的主要参数解释如下: 1. **index**: (必选) 查询的数据所在的索引名称,可以是一个字符串或一个列表,包含多个索引名。 2. **query**: (可选) Elasticsearch DSL查询对象,用来过滤需要返回的文档。如果不提供,会默认扫描整个索引。 3. **scroll**: (可选) 设置滚动搜索的持续时间,单位通常是秒,如`"5m"`(五分钟)。这是一个重要的参数,因为`scan()`不会一次性加载所有结果,而是通过滚动来逐步获取。 4. **size**: (可选) 每次扫描返回的结果数,默认值是10。设置这个值可以根据内和性能需求调整。 5. **request_timeout**: (可选) 请求超时的时间,超过这个时间则抛出异常。 6. ****kwargs**: 可能还包括其他高级选项,如`ignore_unavailable`(忽略不可用的索引),`from_`(偏移量,从哪个位置开始查询)等。 使用`scan()`的一般示例: ```python from elasticsearch import Elasticsearch # 创建连接 es = Elasticsearch() # 定义查询条件(这里仅作示例) body = { "match_all": {} } # 扫描指定索引并获取结果 for hit in es.scan(index="your_index", query=body, size=10): # 处理每个文档 print(hit["_source"])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qqqweiweiqq

你的鼓励将是我最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值