理解和绘制累积分布函数
1. 累积分布函数的概念
在数据分析中,累积分布函数(Cumulative Distribution Function,CDF)是一种非常有用的工具。它在 y 轴上显示的是得分等于或小于 x 轴上值的概率。换句话说,CDF 提供了某一数值或以下数值出现的累计概率。这使得我们可以直观地了解数据的分布特性,例如数据的中心趋势、离散程度以及是否存在异常值。
累积分布函数在统计学中有广泛的应用,尤其是在描述数据的分布形态、比较不同数据集的分布特性以及进行假设检验等方面。通过绘制 CDF,我们可以更清楚地看到数据的分布情况,进而做出更准确的分析和决策。
2. 使用 R 语言绘制累积分布函数
2.1 基础 R 中的 ecdf()
函数
R 语言提供了多种方法来绘制累积分布函数。最常用的是 ecdf()
函数,它可以直接从数据中计算并绘制经验累积分布函数(Empirical Cumulative Distribution Function,ECDF)。ECDF 是基于样本数据计算的累积分布函数,它可以帮助我们直观地了解数据的分布情况。
示例:绘制正态分布的 ECDF
library(multcomp)
library(Hmisc)
# 生成 10 万个正态分布的样本
sam <- rnorm(100000)
# 绘制密度图
plot(density(sam), main="图 8-3-a 密度(从正态分布中抽取样本)", col="coral4")
# 绘制