- 无DSI(直达波)抑制
- 维纳滤波(WF)或者最小二乘(或广义最小二乘)
- CLEAN--见射电天文学中的CLEAN算法.也可以用于无源雷达处理
- NLMS 归一化最小均方误差
- FBLMS/FBLS 快速块最小均方算法
- RLS 递归最小二乘算法
- ECA(扩展相消算法),鲁棒性极高
1.DSI抑制
对于DSI抑制的评估图,通常采用距离-多普勒图来说明,时延为ms,频率为kHZ.
如噪声电平约为-60dB,低于这一电平的目标将被屏蔽.通过实用系统测得的值,可以获得目标的距离,详细见多普勒图.
如,FBLMS滤波在多普勒频率上呈现出一个更深的凹槽(与维纳滤波相比),但是,能够将背景噪声抑制到更低的水平,达到了约-90dB的平均电平.
衡量DSI抑制水平时,通常的指标有:最大DSI电平,本地噪声,目标强度,SINR(目标强度与本地噪声电平的比值)等.
另外,选择DSI滤波方案时还有一个因素需要考虑,即计算需求,尽管使用高速FPGA可以实现更加复杂的方法的应用,但是设计需要考虑效率和成本问题,通过数字滤波来改善DSI抑制仍然是无源雷达发展过程中的一个重要领域,并且是对看似相似的系统进行区分的显著特征之一.
最近,舒普巴赫(Schüpbach)得出结论为:载波多普勒中的扩展相消算法(ECA-CD)的改进型ECA方法能在抑制性能与计算机处理量之间实现最佳平衡.然而,监测通道中接收的直达波可能会从根本上限制系统的灵敏度和动态范围,因此需要谨慎地进行设计和实施.
2.性能预测
- 发射功率
- 目标双基RCS(目前研究还是很少) --双基等效--单基等效,增大飞机目标RCS的另一种机制,是利用飞机下方的镜面反射.但是,这取决于是否满足镜面反射条件,因此具有稍纵即逝的特点,如果大部分发射机的发射方向指向地球表面,就可以提高高度灵敏度.
- 接收机噪声系数 --噪声主要由外部决定,如直达波,多径,其他共信道信号等. <