小模型时代来临~ 如何用ollama跑多个小模型提升并发性能, 用ollama吧

要想发挥OLLAMA的真正实力🎯, 还是要与JBoltAI搭配食用才能发挥其最大价值🤑😂, JBoltAI欢迎亲的随时关注哟🤩😚~


为什么要在一台机器上同一个小模型跑多个?

ollama的大模型最高并发上限是20个, 那么如果我们想进一步提高大模型的并发性能, 20个显然是无法满足我们的日常需求的, 如何做到呢? 今天小编就交给大家如何用ollama用一张显卡, 同一个小模型跑多个, 达到提升并发量的效果~~~ 那么开始吧

提前需要了解的几个点儿~

不要慌哦, 其实很简单~ 使用ollama run命令同一个大模型只能启用一次, 那么问题来了, 如果可以运行多个ollama, 那么是不是就可以同一个大模型启用多个了呢? 那么就需要这么几件事情需要做:

  1. 需要让docker拥有调用GPU的能力, 需要让docker知道具体调用哪张显卡, 毕竟有的亲机器上显卡很多~
  2. 需要让ollama知道调用哪张显卡!

听起来很复杂? 其实实现起来特别简单~

	docker run --gpus 0 -e CUDA_VISIBLE_DEVICES=0 
### 如何在本地环境中运行Ollama模型 #### 准备工作 为了能够在本地环境成功运行Ollama模型,首先要确保已按照官方指导完成了Ollama平台的安装。值得注意的是,在完成安装之后,用户的本地并不会自动拥有任何模型文件;这些需要单独从指定资源处获取[^1]。 对于希望在中国大陆地区使用的开发者来说,推荐试用由阿里云开发的支持中文良好的千问(qwen)模型作为起点。 #### 获取模型 访问官方网站提供的模型库页面https://ollama.com/library ,这里列出了所有受支持的大规模预训练模型供用户选择。针对具体需求挑选合适的版本下载——例如`llama3`或其他更贴合项目特性的选项,并遵循给出的操作说明来准备相应的依赖项和配置参数[^3]。 考虑到网络条件可能带来的挑战,当常规途径难以顺利拉取远程仓库中的最新版时,则可考虑借助其他渠道预先取得目标架构及其权重文件副本再导入至本地实例中执行加载过程[^4]。 #### 启动与交互 一旦上述准备工作就绪,即可利用命令行工具或者其他集成开发环境所提供的接口调用来激活选定的语言理解或生成服务端点。通常情况下这涉及到一系列初始化设置指令,比如定义监听地址、设定最大并发数性能相关参数调整,以及必要的安全认证机制启用等等[^2]。 以NodeJS为例,如果计划结合Open-WebUI这样的前端框架一起构建完整的应用解决方案的话,那么除了基本的服务部署之外还需要额外关注两者之间的兼容性和数据交换协议设计等方面的工作[^5]。 ```bash # 示例:假设已经正确设置了OLLAMA_HOME环境变量指向安装路径 $ cd $OLLAMA_HOME/models/qwen/ $ ollama serve & ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值