强化学习在金融与智能城市领域的应用探索
1. 强化学习在金融领域的应用
强化学习旨在获取顺序决策的策略,以在不确定性下最大化奖励,这与金融领域的目标高度契合。在金融领域,目标是最大化货币奖励,当前决策会产生后续影响,且不确定性是关键因素,因此强化学习在金融界越来越受欢迎。
然而,在金融领域使用强化学习存在诸多挑战:
- 市场难以预测 :金融市场高效但并非完美,信号微弱,几乎全是噪声,很难预测市场走势。
- 市场动态变化 :当前盈利的交易策略可能因他人发现并采用而失效。例如,若人们预知比特币在首次日食时将涨至10万美元,价格现在就会上涨。
- 模拟不完美 :金融市场是现实过程,需创建模拟环境来训练强化学习代理,但模拟不完美,代理学到的可能是模拟模型的特性而非真实信号。
- 数据信号检测难 :现实数据量大,但信号微弱,难以检测。
不过,有一些开源库可用于创建交易代理,TensorTrade就是其中之一。它可用于教育目的和制定交易策略。
1.1 TensorTrade介绍
TensorTrade可轻松构建类似Gym的股票交易环境,允许用户定义和组合各种数据流、特征提取、动作空间、奖励结构等。由于其遵循Gym API,可轻松与RL库(如RLlib)集成。
1.2 安装TensorTrade
使用以下简单的pip命令安装:
pip ins