中心化与标准化

本文深入探讨了数据预处理中的核心概念——中心化与标准化,详细解释了这两种方法的目的与实施步骤,旨在帮助读者理解如何通过数据预处理消除量纲差异,提升机器学习模型的精度与效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中心化(又叫零均值化)和标准化(又叫归一化)概念及目的

目的:消除数据间量纲的差异

方法:中心化:减去均值;归一化:(1)减去均值并除以方差使之服从N(0,1)分布;(2)修改样本使之数值分布在[0,1]

标准化是中心化的进一步处理

归一化与中心化都可能提高精度;归一化使随机下降的速度加快;标准化更好的反应数据的特征。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值