2020-12-01

本文介绍了神经网络相关知识。先阐述其源于生物学神经元,以数学形式表达构成网络,可学习已有数据进行预测,用于图像识别等领域。接着说明神经元数学表示,介绍阶层型神经网络结构与功能,最后提及神经网络通过数学联系,涉及加权输入、激活函数和矩阵运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.什么是神经网络
生物学上的神经元。
接受其他多个神经元的信号,每个输入的信号代表的权重不一样,当他们的和超过固定的值,则神经元点火,否则不做出任何反应。
而人工神经网络
是把生物学上的神经元以数学形式表达,并以其为单位,构成的网络。
神经网络可以通过学习已有的数据对以后的事情进行预测。
神经网络可以应用于图像识别等领域。例如数字识别,给出一组数字要计算机识别数字零。然而一个数字0,
不同的人写,就有不同的0。
如果把所有的东西交给计算机是不现实的。这时神经网络便发挥了作用。(学习已有的数据对未知的数据进行判断。)
二.神经元的数学表示形式。
一个神经元有多个输入信号,且每个输入信号对应的权重不一样。
如果w1x1+w2x2+w3x3>阈值
f(w1
x1+w2x2+w3x3)=1
否则
f(w1x1+w2x2+w3x3)=0神经元不兴奋。
w1
x1+w2x2+w3x3-阈值(1-1)
然而为了等式的整齐我们把负号变为正。
因此(1-1)得
w1x1+w2x2+w3x3+b。
三.神经网络
神经单元是神经元的数学表达,多个神经元可以组成神经网络。
网络的连接多种多样,我将写一下简单的阶层型神经网络。
阶层形神经网络顾名思义,按层来划分神经元,且前一层任一神经元与后一层任一神经元相连。
按功能分为三个层:
输入层:负责读取神经网络的信息,将数据按原样输出。
隐藏层:处理信息,特征提取。
输出层:是整个神经网络的输出。
神经网络是通过特征的多次提取来找到答案,隐藏层提取特征,通过权重隐藏层的神经单元便可获取自己想要数据,而屏蔽自己不需要的数据,
通过偏执可以进一步帮助神经元消除这些噪音。
四.神经网络通过数学联系起来:
在求加权输入时 z=w1
x1+w2x2+w3x3+b为一元函数。
在神经网络中后一层往往需要前一层的值,这个特性很像数列中的递推公式。
激活函数神经网络的加权输入经过激活函数后得出输出值。
为了让计算方便,我们将神经网络每个层的值用数来表示。
这就需要了解矩阵的运算。
A.B均是矩阵 A*B=C 拿C的第i行第j列元素为例子,解释他的出处。他是A矩阵的第I行的行向量与B矩阵第j列的列向量的
内积所得到的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值