- 博客(0)
- 资源 (23)
- 收藏
- 关注
完结15章大模型RAG进阶实战营(第一期,25年6月完结)
内容概要:本文详细介绍了RAG(Retrieval-Augmented Generation)技术的进阶应用,旨在探讨如何有效利用外部知识增强大规模预训练语言模型的性能。RAG技术通过结合信息检索与文本生成,突破了传统语言模型的知识局限,实现了动态知识更新和更高的事实准确性。文章从技术原理、系统架构、实战案例、优化策略等多个维度展开讨论,全面解析了RAG技术的特点和优势。RAG系统由检索器、生成器和融合模块组成,通过两阶段处理实现高效的知识应用。实战案例展示了RAG在开放域问答、长文本生成和多模态任务中的出色表现。性能优化策略包括优化检索质量、改进生成过程和端到端联合训练。未来展望指出RAG技术将在高效检索算法、智能生成控制和应用场景拓展等方面继续发展。;
适合人群:对自然语言处理和大规模预训练模型感兴趣的开发者和研究者,尤其是希望深入了解RAG技术及其应用的专业人士。;
使用场景及目标:①理解RAG技术如何突破传统语言模型的知识局限,实现动态知识更新;②掌握RAG系统架构和各组件的工作原理;③学习RAG在不同应用场景中的具体实现和优化方法;④探讨RAG技术的未来发展方向和潜在挑战。;
其他说明:本文提供了详细的理论和技术背景,建议读者结合实际案例和优化策略进行深入学习,并关注RAG技术在不同领域的最新进展。
2025-06-10
亿用户级实时动态规则营销推送系统视频课程
内容概要:文章探讨了亿用户级实时动态规则营销推送系统的设计与实现方法。首先分析了系统需求,强调高并发处理能力、实时性、动态规则引擎、扩展性、数据一致性和系统可靠性以及多维度用户分群、A/B测试和效果实时监控等功能需求。接着详细阐述了系统架构设计,包括分层分布式架构、Lambda架构的数据处理层、基于Spark和Flink的核心计算层、混合存储方案和实时数据处理流水线。再者,介绍了关键技术实现,如离线+实时混合计算模式的用户画像构建、改进的Rete算法用于动态规则匹配、基于多臂老虎机模型的推送策略优化。最后,通过实际案例展示了系统的应用效果,证明其在提升营销效果、优化用户体验方面的显著成效,并展望了未来工作的方向。
适合人群:从事营销系统开发的技术人员、企业营销管理人员以及对大数据处理和实时计算感兴趣的开发者。
使用场景及目标:①构建能够服务亿级用户的实时动态规则营销推送系统;②掌握高并发处理、实时数据处理、动态规则引擎等核心技术;③学习如何通过智能算法优化营销策略,提升营销效果。
阅读建议:此资源深入探讨了亿用户级实时动态规则营销推送系统的各个方面,不仅涉及技术实现,还包括系统设计思路和实际应用案例。因此,在阅读过程中,建议重点关注系统架构设计和技术实现细节,并结合实际案例理解系统的应用场景和效果。
2025-05-28
完结16章AI Agent从0到1定制开发 全栈+全流程+企业级落地实战
内容概要内容概要:本文系统性地介绍了AI Agent从0到1:本文系统性地介绍了AI Agent的定制开发全过程从0到1的定制开发全过程,涵盖全栈技术架构设计、,涵盖全栈端到端的技术架构设计、开发流程及企业端到端的开发流程以及企业级落地的最佳实践。文章首先解释级落地的最佳实践了AI Agent的概念。首先阐述了及其在企业中的AI Agent作为智能应用类型,强调交互核心载体的重要性了其在智能及其在不同行业的交互中的重要性应用,随后详细。接着详细阐述解析了开发基础了开发流程,,包括不同类型AI Agent的特点和技术栈包括需求分析、数据处理、模型构成。接着,围绕全流程开发方法训练、测试验证等关键步骤。论展开讨论,技术架构部分重点强调需求分析、数据处理、模型介绍了分层设计理念,涉及基础设施层训练、测试验证、数据层、等关键步骤。核心算法层和在全栈技术前端交互层的具体架构设计部分,实现技术。最后重点介绍了分层,通过实际案例设计理念,包括基础设施分析,探讨了层、数据层企业在性能优化、、核心算法层安全合规和系统和前端交互层集成等方面的挑战及的设计要点。最后解决方案。;
适合,结合实际案例人群:对AI探讨了企业级 Agent开发感兴趣的开发者落地面临的挑战与、数据科学家、解决方案,如性能算法工程师以及希望优化、安全合规推进企业智能化转型、系统集成等的管理者。;
,并展望了AI Agent的发展趋势和使用场景及目标:①理解未来方向。;
AI Agent在不同适合人群:对行业的应用场景,如AI Agent开发感兴趣的软件工程师、数据智能客服、销售科学家、产品经理以及相关领域的研究人员。助手等;②掌握AI Agent;
使用场景及开发的全流程方法目标:①论和技术栈;帮助企业理解AI Agent开发的全流程,③学习如何应对企业级落地掌握关键技术和实施策略;②为开发者提供从中的技术挑战,如性能优化、需求分析到部署安全合规等。上线的完整指导;
其他说明:,助力企业智能化本文不仅提供了理论转型;③指导,还结合通过实际案例展示实际案例进行分析,为类似项目提供参考和借鉴。;
其他说明,建议读者结合:本文不仅提供了自身业务场景,采用敏捷开发方法理论指导,还结合实际案例进行,逐步扩展AI分析,建议读者 Agent的能力范围和结合自身业务场景应用边界。,采用敏捷开发方法,逐步扩展AI Agent的能力范围和应用边界。
2025-05-20
istio入门到精通【400节大课】
内容概要:本文详细介绍了Istio服务网格平台,从基础概念到高级应用,帮助读者系统掌握这一云原生技术。首先阐述了Istio的基本架构,由数据平面(智能代理Envoy)和控制平面组成,强调其透明代理机制和服务间通信管理能力。接着讲解了Istio的安装部署流程,涵盖环境准备、安装方法选择及生产环境注意事项。核心功能部分重点介绍了流量管理、安全机制和可观测性三大模块,展示了Istio在微服务治理中的强大功能。最后探讨了Istio在大规模生产环境下的进阶应用,如多集群部署、性能调优和与CI/CD集成等实践案例。;
适合人群:对微服务架构感兴趣的开发者、架构师及运维人员,特别是希望深入了解服务网格技术的专业人士。;
使用场景及目标:①理解Istio的基础概念和架构设计;②掌握Istio的安装配置方法;③熟悉流量管理、安全控制和监控分析等核心功能;④学习Istio在生产环境中的高级应用场景和最佳实践。;
其他说明:本文提供了完整的Istio学习路径,从入门到精通,帮助读者构建系统的Istio知识体系。建议读者按照文章结构逐步学习,结合实际操作加深理解,同时关注Istio官方文档和技术社区的最新动态。
2025-05-13
前端开发2025徐老师Vue3全家桶课程+大型项目实战
内容概要:本文详细介绍了Vue3全家桶技术栈及其在大型项目中的应用。首先概述了Vue3全家桶的核心组成部分,包括Vue3核心库、Vue Router、Pinia/Vuex、Vite/Webpack、UI框架以及相关工具链。接着阐述了大型项目的架构设计,强调了良好的目录结构和模块化设计的重要性。然后深入探讨了组合式API的最佳实践、Pinia状态管理的使用方法和复杂的路由权限控制。在性能优化方面,提出了代码分割、响应式优化和列表渲染优化等策略。最后分享了全局错误处理、API服务层封装、国际化实现等实战经验和测试与部署的相关知识,强调了Vue3全家桶为大型前端项目提供的完整解决方案,以及团队协作和工程化实践的重要性。;
适合人群:具有一定前端开发经验,尤其是对Vue.js有一定了解的研发人员。;
使用场景及目标:①掌握Vue3全家桶技术栈的核心组件及其集成方法;②学会设计和实现大型项目的架构,包括模块化设计和代码分割;③理解并应用组合式API、Pinia状态管理和路由权限控制;④掌握性能优化技巧,如代码分割、响应式优化等;⑤学习大型项目的实战经验和测试部署策略。;
其他说明:本文提供了详细的代码示例和技术实现细节,建议读者在实践中逐步理解和应用这些概念,并结合具体业务需求进行调整和优化。此外,文中还提供了网盘和腾讯微云的下载链接,方便获取相关资源。
2025-04-29
【人工智能应用开发】Dify平台构建智能体与企业知识库:大语言模型在企业级AI应用中的部署与实践
内容概要:本文介绍了Dify这一开源大语言模型应用开发平台及其与DeepSeek结合构建智能体和企业知识库的方法。Dify融合了后端即服务和LLMOps理念,支持众多模型,拥有直观的Prompt编排界面、高质量RAG引擎、稳健Agent框架等特性,极大地方便了AI应用的开发。文章详细讲述了Dify的安装部署步骤,包括环境准备、获取代码和启动服务,强调了Linux系统和Docker的重要性。对于创建知识库,文中指出其作为智能数据仓库的作用,阐述了从准备知识数据、数据导入到实现知识问答的具体流程,通过向量数据库技术提升AI的回答准确性。
适合人群:对AI应用开发有兴趣的技术人员或非技术人员,尤其是希望快速搭建生成式AI应用并构建企业知识库的从业者。
使用场景及目标:①帮助用户快速搭建生产级别的AI应用,减少重复劳动,专注于业务创新;②创建个性化的企业知识库,提高AI对专业问题回答的准确性。
阅读建议:在学习过程中,应关注Dify提供的关键技术栈优势,按照安装部署步骤实际操作,同时理解知识库构建原理,结合具体案例进行实践。
2025-04-11
基于SpringBoot3.x+Vue3.x整合从0到1一步一步实现酒店管理系统
视频课程下载——基于SpringBoot3.x+Vue3.x整合从0到1一步一步实现酒店管理系统
2024-12-11
2024Kuberentes+DevOps云原生运维开发全栈架构师技术实战课程
给大家分享一套课程——【2024】Kuberentes+DevOps云原生运维开发全栈架构师技术实战课程
2024-12-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人