如何向大模型学习提升自己算力
01|我们不是太笨,而是“算力”太低
你现在想象一个人正在拼命分析一个需求,他翻出Kano模型,试图将用户反馈归为“期望型”“无差异型”“魅力型”。
但你有没有想过:
为什么是这五类?
为什么不是七类?
再比如鲍格达斯的社会距离量表——你愿意让某群人做邻居?当同事?结婚对象?这些问题看似科学,实则粗糙。
这些模型,并不是为了“还原真实世界”,而是为了解决一个根本问题:
我们算不过来。
我们的大脑,就是一台生物算力机。它每秒能处理的信息,大约只有 60比特。
它没法像超级计算机一样对万物精准建模,只能靠“**压缩世界”的方式活下去:
- 用标签代替理解;
- 用刻板印象做判断;
- 用情绪当作权衡;
- 用故事取代逻辑。
甚至,语言本身就是压缩。一句“我难过”,远比一个拥抱更笨拙。
维特根斯坦说过一句话:
语言的边界,就是思想的边界。
归根结底,其实就是算力不足。
这会带来什么影响?
社会层面会带来《乌合之众》效应,会在一些重大决策,甚至政治决策中,出现群体极化效应。看看美国大选。
经济市场上会出现非理性行为,比如:追涨杀跌。
个人层面会带来拖延症,情绪化决策。
那么我们怎么办?如何解决算力问题呢?
02|向AI学习
首先我们要明白,算力总有穷尽。
我们核心目标不是解决算力本身,而是如何提升解决问题的能力。
AI的世界给了我们一套答案:
解决问题,不一定靠更聪明,而是靠更好的“三件套”:算法、算力、数据。
1. 算法:不是智商高,而是方法对
算法并不神秘,它本质是“解决问题的一套步骤”。
算法的价值在于提升算力的投产比,在算力不变的情况下,有更好的效率,达成更好效果。
比如前面提到的kano模型,并不让你的智商变高,但可以让你在分析需求上更“聪明”更准确。
在算法维度,我们有三点可以优化的空间:
-
广度:掌握更多算法(模型、框架),以求在面对不同问题上可以有更好的算法覆盖度;尽量解决任何问题的时候都有模型可以运用。
-
深度:对自己的关键领域的模型使用能力足够精深,甚至根据自己的场景,对模型加以优化改造。
-
链接:有足够好的链接意识和能力,时刻想着使用模型(系统2问题,少受系统1(情绪系统)左右),能在大多数场景下使用正确的算法。
巴菲特的合伙人查理芒格式就是采用的这种策略,他拥有上百个框架(算法),对自己关键领域的框架使用的及其熟练。
AI大模型中的混和专家模型(Mixture of Experts,MoE)原理也是类似,将模型划分为多个“专家”子网络动态选择激活的专家,来提升模型容量和性能,同时优化算力需求。
面对一个问题,调用这个问题适合的专家(链接),专家根据情况进行处理(深度),需要有更多的专家面对更广阔的问题(广度),以此来相对节省算力。
2. 算力:绝对算力与相对算力
算力虽有穷尽,但也可以适当提升。
人的算力,有两个维度:绝对算力和相对算力。
绝对算力的提升:主要就是智商的提升。
一方面智商来自于遗传,一方面智商是可以改变的。
遗传与环境影响大约占50%-80%,儿童期的高可塑性,可以提升5-10分。成年期通过持续学习、特定认知训练(记忆、逻辑)、良好生活方式(运动、睡眠)可以保持和小范围提升。
但更重要的是,在解决问题上,智商只占一部分要素。
解决问题的算力提升主要取决于:专业知识、创造力、思维体系、理性。
相对算力的提升:人不是机器,人是吃状态的。所以珍惜自己的优质决策资源,每天做有限关键决策。尤其不要在情绪化和状态不好的时候做决策。
请记住:
算力不是用来“耗”的,是用来“省”的。
3. 数据:人也需要优质训练数据
大模型之所以能成为大模型,除了有好的算法,和强大的算力,很重要的就在于“吃了”足够多足够优质的数据。
大模型的聪明,靠的是“喂进去大量优质数据”+“针对性微调”。
对于我们人类来说,也需要优质的数据:优秀的书、优秀的内容、好的对话。
- 你读的书,是你认知的底座;
- 你对话的对象,是你思维的镜子;
- 你关注的内容,是你大脑的微调数据。
我们需要专业领域内容的输入,建立好的反馈机制来对自己大脑做微调。
小结
单纯提升绝对算力其实是很难的,更多的保持算力不衰减。
提升解决问题的方法是有明确路径的,用好的框架和方法做覆盖,用思维建立场景和框架的链接,通过足够多高质量的数据给自己做微调,通过行业知识输入建立自己的RAG。
我们有些方面不如机器,比如你给机器知识,它是真学。
但我们有些方面却可以超越机器:人可以建立信念。
愿高算力的大家相会在高算力的未来!