-填涂颜色-

题目描述

由数字0组成的方阵中,有一任意形状闭合圈,闭合圈由数字1构成,围圈时只走上下左右4个方向。现要求把闭合圈内的所有空间都填写成2.例如:6×6 的方阵(n=6),涂色前和涂色后的方阵如下

 

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1 
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1 


 

输入

每组测试数据第一行一个整数n(1≤n≤30)
接下来n行,由0和1组成的n×n 的方阵。
方阵内只有一个闭合圈,圈内至少有一个0。

输出

已经填好数字2的完整方阵。

样例输入

6
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1

样例输出

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1

提示

1≤n≤30

参考代码:

#include<bits/stdc++.h>
using namespace std;
int n;
int q[22500][2],hh,tt,kx,ky,gx,gy;
int dx[]={1,0,-1,0};
int dy[]={0,1,0,-1};
int d[150][150];
char a[150][150];
bool b[150][150];
bool around(int y,int x){
    bool s=true;
   

### 图像处理中的填涂颜色算法实现 在图像处理领域,填涂颜色功能通常涉及以下几个核心环节:灰度化、二值化以及基于特定条件的颜色填充。以下是具体的技术细节: #### 1. 灰度化处理 为了简化彩色图像的数据结构,通常会先将其转换为灰度图像。这过程可以通过加权平均值法完成,其主要思想是从原图像中提取 R、G、B 各层像素值并通过加权求和计算灰度图的亮度值[^2]。 ```python import cv2 import numpy as np # 加载图像 image = cv2.imread('input_image.jpg') # 转换为灰度图像 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) cv2.imwrite('gray_image.png', gray_image) ``` #### 2. 二值化处理 灰度化后的图像需要进步通过阈值分割转化为黑白二值图像。这步骤有助于区分目标区域(如填涂部分)与背景噪声。 ```python # 应用全局阈值二值化 _, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY) cv2.imwrite('binary_image.png', binary_image) ``` 此操作能够有效分离填涂区域与其他无关内容。 #### 3. 颜色填充逻辑 对于填涂颜色的具体实现,可以借助连通域分析或者 Flood Fill 算法来定位待填充的目标区域,并赋予指定色彩值。 ```python def flood_fill_color(img, seed_point, new_color): """ 使用Flood Fill算法对指定种子点所在的区域进行颜色替换 参数: img (numpy.ndarray): 输入图像 seed_point (tuple): 种子点坐标(x,y) new_color (tuple): 新颜色(B,G,R)格式 返回: filled_img (numpy.ndarray): 处理后的图像 """ height, width = img.shape[:2] # 创建掩码用于存储已访问过的像素位置 mask = np.zeros((height + 2, width + 2), dtype=np.uint8) # 执行floodFill函数 cv2.floodFill(img, mask=mask, seedPoint=seed_point, newVal=new_color) return img # 示例调用 filled_image = flood_fill_color(cv2.imread('binary_image.png'), (50, 50), (255, 0, 0)) cv2.imwrite('filled_image.png', filled_image) ``` 上述代码片段展示了如何利用 OpenCV 的 `floodFill` 方法针对给定起点执行颜色覆盖操作[^1]。 #### 4. 特殊情况下的优化措施 当面对复杂场景比如答题卡存在倾斜变形等问题,则需引入额外预处理步骤以提升准确性。例如,可运用 Hough 变换检测直线进而校准文档方向;亦或是依靠形态学运算消除干扰因素等手段改善最终效果[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值