ubuntu16.04+anaconda3+tensorflow+keras+cpu虚拟环境下搭建
1、说明
此教程参考了许多CSDN上大佬的文章,在此引用,如果不当请大佬联系我删除
2、anaconda3的安装
(1)用anaconda3的好处
用anaconda在同一台电脑上创建不同的运算环境(如python2或3),不同的环境中可以添加自身需要的包,这些包的版本可以根据需要选择;不同环境间可以较方便地切换。所以可以合理地管理多个项目,不会出现依赖包的冲突问题。
(2)安装anaconda3
参考教程:(https://blog.csdn.net/qq_15192373/article/details/81091098)
3、利用anaconda创建(安装)tensorflow
(1)创建tensorflow计算环境
(这里的tensorflow是环境的名字,不是指安装了tensorflow)
conda create -n tensorflow python=3.6
#注意指定自己要用的python版本号(这是必须的)
(2)激活tensorflow环境
source activate tensorflow
(tensorflow) qz@qz:~ #激活后会显示处于该环境中
(3)创建的指定环境中安装tensorflow
注意:因为后期需要安装keras,tensorflow和keras存在版本匹配问题,所以最好确定自己的tensorflow和keras版本以免出现不匹配问题。tensorflow和keras版本匹配参考:(https://blog.csdn.net/yeyang911/article/details/84968473)
1)下载cpu版tensorflow安装包
下载链接:(https://github.com/lakshayg/tensorflow-build/blob/master/README.md)
涉及到需要确认cpu支持的指令,如FMA, AVX, AVX2, SSE4.1, SSE4.2, AVX512F。验证方法,没有去验证到底有啥,是在安装过程中提示不支持AVX512F,就选择其他版本就好了。python版本选择相近的自己测试似乎没什么问题。
2)将whl文件重命名为tensorflow-x.x.x-py3-none-linux_x86_64.whl
x.x.x是自己的版本号,主要是将中间的cp36-cp36m改成py3-none,不然会出现不支持的报错。
3)终端中切换到whl文件所在的目录
4)pip install --ignore-installed --upgrade tensorflow-x.x.x-py3-none-linux_x86_64.whl
注:不要用sudo pip,也不要用pip3
5)安装结束,可以进入python import一下验证
python
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
sess.run(hello)
#打印出内容,不报错,即成功安装
4、python科学套件的安装
安装python科学套件,都是在创建的名为tensorflow的虚拟环境下进行
(1)安装BLAS库(这里安装的是OpenBLAS),确保你可以在CPU上运行快速的张量计算
git clone https://github.com/xianyi/OpenBLAS.git
cd OpenBLAS
conda install gfortran
make FC=gfortran -j16
sudo make PREFIX=/home/qz/anaconda3/envs/tensorflow/lib/python3.6/site-packages install
将OpenBlas安装到/home/qz/anaconda3/envs/tensorflow/lib/python3.6/site-packages 目录下。
(2)安装:Numpy、SciPy、matplotlib。无论是否做深度学习,想要使用python进行机器学习或科学运算,这一步是必须的。
conda install numpy scipy matplotlib yaml
四个包,分开一个个安装
(3)安装HDF5,其实包的名字叫h5py
conda install h5py
(4)安装Graphviz和pydot,这两个包可以将keras模型可视化,但并不是必需的包。
conda install graphviz
conda install pydot==版本号
一定注意pydot的安装,要指定版本号不然会将环境里的python版本修改掉,具体装那个版本的pydot 看你的tensorflow版本。
(5)安装用到的其他包
conda install python-opencv
提示:其实漏安、错安某些包问题也不大,当运行程序的时候程序会提醒你那些包没有安装;如果错安可以使用 conda uninstall 某个包卸载
(5)keras的安装
提醒一下还是要在激活的名为tensorflow虚拟环境下进行(别忘了keras和tensorflow版本的对应)
(1)可以直接conda安装
conda install keras
(2)也可以从github上克隆下来安装keras,这样可以访问keras/examples文件夹,里面包含许多示例脚本学习
git clone https://github.com/fchollet/keras
cd keras
python setup.py install
(6)完成
可以进入python import tensor和keras试一试如果不报错则安装成功
表明tensorflow没问题
报名keras没问题
教程还算是详细,后期如果发现不足,我会继续修改,仅供参考