ubuntu下anaconda3+tensorflow+keras+cpu虚拟环境下搭建

本文详细介绍了在Ubuntu 16.04系统中,如何使用Anaconda3创建虚拟环境,并在该环境中安装配置TensorFlow和Keras,包括解决版本匹配问题,以及安装一系列科学计算和机器学习所需的软件包。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ubuntu16.04+anaconda3+tensorflow+keras+cpu虚拟环境下搭建

1、说明

此教程参考了许多CSDN上大佬的文章,在此引用,如果不当请大佬联系我删除

2、anaconda3的安装

(1)用anaconda3的好处
用anaconda在同一台电脑上创建不同的运算环境(如python2或3),不同的环境中可以添加自身需要的包,这些包的版本可以根据需要选择;不同环境间可以较方便地切换。所以可以合理地管理多个项目,不会出现依赖包的冲突问题。
(2)安装anaconda3
参考教程:(https://blog.csdn.net/qq_15192373/article/details/81091098)

3、利用anaconda创建(安装)tensorflow

(1)创建tensorflow计算环境
(这里的tensorflow是环境的名字,不是指安装了tensorflow)

  conda create -n tensorflow python=3.6
   #注意指定自己要用的python版本号(这是必须的)

(2)激活tensorflow环境

   source activate tensorflow
  (tensorflow) qz@qz:~    #激活后会显示处于该环境中

(3)创建的指定环境中安装tensorflow

注意:因为后期需要安装keras,tensorflow和keras存在版本匹配问题,所以最好确定自己的tensorflow和keras版本以免出现不匹配问题。tensorflow和keras版本匹配参考:(https://blog.csdn.net/yeyang911/article/details/84968473)

1)下载cpu版tensorflow安装包

下载链接:(https://github.com/lakshayg/tensorflow-build/blob/master/README.md)

涉及到需要确认cpu支持的指令,如FMA, AVX, AVX2, SSE4.1, SSE4.2, AVX512F。验证方法,没有去验证到底有啥,是在安装过程中提示不支持AVX512F,就选择其他版本就好了。python版本选择相近的自己测试似乎没什么问题。

2)将whl文件重命名为tensorflow-x.x.x-py3-none-linux_x86_64.whl

x.x.x是自己的版本号,主要是将中间的cp36-cp36m改成py3-none,不然会出现不支持的报错。

3)终端中切换到whl文件所在的目录

4)pip install --ignore-installed --upgrade tensorflow-x.x.x-py3-none-linux_x86_64.whl

      注:不要用sudo pip,也不要用pip3

5)安装结束,可以进入python import一下验证

 python
 import tensorflow as tf
 hello = tf.constant('Hello, TensorFlow!')
 sess = tf.Session()
 sess.run(hello)
 #打印出内容,不报错,即成功安装

4、python科学套件的安装

安装python科学套件,都是在创建的名为tensorflow的虚拟环境下进行

(1)安装BLAS库(这里安装的是OpenBLAS),确保你可以在CPU上运行快速的张量计算

  git clone https://github.com/xianyi/OpenBLAS.git
  cd OpenBLAS
  conda install gfortran
  make FC=gfortran -j16
  sudo make PREFIX=/home/qz/anaconda3/envs/tensorflow/lib/python3.6/site-packages  install 

将OpenBlas安装到/home/qz/anaconda3/envs/tensorflow/lib/python3.6/site-packages 目录下。

(2)安装:Numpy、SciPy、matplotlib。无论是否做深度学习,想要使用python进行机器学习或科学运算,这一步是必须的。

    conda install numpy scipy matplotlib yaml
    四个包,分开一个个安装

(3)安装HDF5,其实包的名字叫h5py

     conda install h5py

(4)安装Graphviz和pydot,这两个包可以将keras模型可视化,但并不是必需的包。

     conda install graphviz
     conda install pydot==版本号
     一定注意pydot的安装,要指定版本号不然会将环境里的python版本修改掉,具体装那个版本的pydot 看你的tensorflow版本。

(5)安装用到的其他包

     conda install python-opencv

提示:其实漏安、错安某些包问题也不大,当运行程序的时候程序会提醒你那些包没有安装;如果错安可以使用 conda uninstall 某个包卸载

(5)keras的安装

提醒一下还是要在激活的名为tensorflow虚拟环境下进行(别忘了keras和tensorflow版本的对应)

(1)可以直接conda安装

      conda install keras

(2)也可以从github上克隆下来安装keras,这样可以访问keras/examples文件夹,里面包含许多示例脚本学习

     git clone https://github.com/fchollet/keras
     cd keras
     python setup.py install

(6)完成

可以进入python import tensor和keras试一试如果不报错则安装成功

在这里插入图片描述表明tensorflow没问题

在这里插入图片描述
报名keras没问题

教程还算是详细,后期如果发现不足,我会继续修改,仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值