5、图像质量评估:从基础指标到高级度量

图像质量评估:从基础指标到高级度量

在图像处理领域,降噪任务与图像质量的提升密切相关。大多数降噪方法的性能评估通常在受人工噪声(如高斯噪声、泊松噪声、椒盐噪声等)污染的小图像上进行,通过向干净图像添加人工噪声得到噪声版本,以此衡量降噪算法在真实数码相机或移动图像上的性能。

1. 客观质量指标概述

我们主要关注客观质量指标 (Q(g, \upsilon)),它用于关联去噪图像 (g) 和无噪声参考图像 (\upsilon) 之间的感知差异(质量),并满足以下条件:
1. 对称性 :(Q(g, \upsilon) = Q(\upsilon, g))。
2. 有界性 :对于常数 (B),(Q(g, \upsilon) \leq B)。
3. 唯一最大值 :当且仅当 (g = \upsilon)(即两幅图像无失真)时,(Q(g, \upsilon) = B)。

在众多质量指标中,均方误差(MSE)和峰值信噪比(PSNR)是常用的两个指标。它们计算简单,但仅通过逐像素比较图像强度来衡量相似度,未考虑图像结构和人类对图像特征的感知,因此可能与主观质量不匹配,在某些情况下会导致不理想的结果。

为了提高评估准确性,需要对相似度测量进行修改,使其与人类视觉系统(HVS)兼容。纹理峰值信噪比(tPSNR)和平坦峰值信噪比(fPSNR)是在基本PSNR的基础上,考虑图像上下文得到的,它们分别针对图像的纹理区域和平滑区域计算PSNR,因为人类对这两种不同区域的噪声容忍度差异很大。

选择客观质量指标后,可以通过以下方案评估图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值