- 博客(5)
- 收藏
- 关注
原创 SAM2模型微调训练、验证和预测(Part2)
本文详细介绍了SAM2模型的验证与预测流程。在模型验证部分,文章阐述了如何使用带标注的测试集评估模型性能,包括数据准备、提示点生成、模型推理、结果后处理等关键步骤和IoU和CPA两种评估指标的计算方法。在零样本预测部分,说明了如何对无标注新图像进行预测,包括随机提示点生成和人工定性评估方法。文章提供了完整的代码实现和可视化示例,展示了模型在验证和预测场景下的应用效果。这些流程为SAM2模型的实际应用提供了完整的解决方案。
2025-05-26 15:15:18
2112
原创 SAM2模型微调训练、验证和预测(Part1)
要实现SAM2特定目标预测需要进行模型的微调。本文介绍了sam2模型的微调训练方法。包括环境配置、数据集准备和训练代码及损失曲线的绘制。
2025-05-07 16:03:16
2693
6
原创 SAM2本地部署教程
同时,pytcharm中的编译器也需要修改,随便新建一个python文件,选择设置-项目名-python解释器-添加解释器-添加本地解释器-系统解释器-找到创建的虚拟环境的地址中的python.exe确定并应用。该项目文件夹中,sam2文件夹为核心代码,notebooks中包含官方演示代码,setup.py用于搭建sam2环境。接下来的包的安装请在anaconda prompt中的sam2虚拟环境中完成,避免包被安装在默认盘c盘。下载之后记住项目的路径,后续代码的运行、脚本编写、模型训练都可以在此处进行。
2025-04-24 15:54:36
2844
3
原创 适用于YOLO模型训练的标签处理脚本
如果我们只想要识别特定类别,例如Hardhat,Person,machinery的时候,直接从yaml删除其余类别就会发生错误,因为标签仍然保留着10个类别,且yaml文件的类别顺序与label.txt文件的类别顺序不一致。因此有没有一种方式能够同时编辑所有label.txt的标签,保留你想要的,然后将类别重新从0开始排序呢?
2025-04-10 21:05:56
246
原创 (机器学习)测试集和训练集的划分对预测结果的影响
由于该组数据整体方差较大,因此根据某一个特征的大小进行划分时,尤其是生成二次项之后,很容易出现测试集的平均数值明显比训练集要大的情况。在使用python对35717组数据进行回归分析时,在生成二次项之后,发现使用线性回归模型时测试集MSE特别大,而且r^2系数出现负值。采用8:2的比例对原数据划分训练集和测试集进行划分,并且采用随机分配的方式。可能是因为测试集中出现异常较大的值,或者测试集某些特征整体数值较大。通过此方式划分的测试集和训练集,模型预测结果有了很好的改善。
2024-08-07 17:26:36
595
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人