
自然语言处理
文章平均质量分 88
通过本专栏,深入探索自然语言处理(NLP)的世界。我们将覆盖从传统NLP模型到最新的大型语言模型(LLM),如BERT、GPT等,帮助读者理解其背后的原理与应用。无论是文本分类、情感分析,还是机器翻译和文本生成,我们将逐步解析每个环节,揭示自然语言处理的奥秘。通过实际战例和详细的代码示例,我们将帮助
「已注销」
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
word2vec简单总结
与Skip-Gram相反,CBOW模型假设上下文词可以用来生成中心词。Skip-Gram模型假设中心词可以用来生成上下文词。在计算条件概率时我们通常会对这些上下文词取平均,即。,则Skip-Gram模型的似然函数为。表示其用作中心词和上下文词的两个向量。维向量来表示,具体来说,对于索引为。CBOW模型的似然函数为。词表中的每个词都由两个。,则上下文词的数量为。...........................原创 2022-07-19 21:33:31 · 388 阅读 · 2 评论 -
情感分析系列(一)——IMDb数据集及其预处理
IMDb数据集及其预处理原创 2022-10-28 12:21:23 · 10557 阅读 · 1 评论 -
情感分析系列(二)——使用BiLSTM进行情感分析
使用BiLSTM进行情感分析原创 2022-10-28 16:05:37 · 3364 阅读 · 2 评论 -
情感分析系列(三)——使用TextCNN进行情感分析
使用TextCNN进行情感分析原创 2022-10-30 13:58:30 · 2441 阅读 · 0 评论 -
情感分析系列(四)——使用BERT进行情感分析
使用BERT进行情感分析原创 2022-11-01 22:12:11 · 5824 阅读 · 1 评论