分布式人工智能的系统模型
1. 系统模型的定义
分布式人工智能(DAI)系统模型是指通过多个智能代理(agents)协同工作来解决问题的一种框架。与传统的集中式系统不同,DAI系统中的代理不仅在物理上分布,而且在逻辑上也独立运作,但它们通过特定的通信机制相互协作,共同完成复杂任务。这种分布式的特性使得DAI系统在处理大规模、复杂且动态变化的问题时表现出显著的优势。
2. 系统模型的要素
2.1 代理(Agents)
代理是DAI系统的基本构建单元,它们可以是简单的处理元素,也可以是复杂的实体,具备一定的智能行为。每个代理都有自己的局部目标和知识库,并能够根据环境变化调整自己的行为。代理之间的交互是合作性的,因为必须共享信息以达成整体解决方案。
代理特性 | 描述 |
---|---|
自主性 | 代理能够在一定程度上自主决策,而不依赖于中央控制器。 |
交互性 | 代理之间通过消息传递或其他形式进行沟通,以协调行动。 |
适应性 | 代理可以根据环境的变化调整自己的行为模式。 |
2.2 交互方式