针对 BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation.该论文提出的语义分割网络,根据第三方实现提供的pytorch源码,进行了详细分析解读。论文中的网络框架如下图:
源码中网络设计
对照上面的网络框架,下面的代码很好理解。其中在Context path部分,代码中使用的是res18和res101。
class ConvBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=2,padding=1):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
def forward(self, input):
x = self.conv1(input)
return self.relu(self.bn(x))
class Spatial_path(torch.nn.Module):
def __init__(self):
super().__init__()
self.convblock1 = ConvBlock(in_channels=3, out_channels=64)
self.convblock2 = ConvBlock(in_channels=64, out_channels=128)
self.convblock3 = ConvBlock(in_channels=128, out_channels=256)
def forward(self, input):
x = self.convblock1(input)
x = self.convblock2(x)
x = self.convblock3(x)
return x
class AttentionRefinementModule(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.bn = nn.BatchNorm2d(out_channels)
self.sigmoid = nn.Sigmoid()
self.in_channels = in_channels
def forward(self, input):
# global average pooling
x = torch.mean(input, 3, keepdim=True)
x = torch.mean(x, 2, keepdim=True)
assert self.in_channels == x.size(1), 'in_channels {} and out_channels {} should all be {}'.format(self.in_channels,x.size(1),x.size(1))
x = self.conv(x)
# x = self.sigmoid(self.bn(x))
x = self.sigmoid(x)
# channels of input and x should be same
x = torch.mul(input, x)
return x
class FeatureFusionModule(torch.nn.Module):
def __init__(self, num_classes,in_channels=1024):
super().__init__()
self.in_channels = in_channels
self.convblock = ConvBlock(in_channels=self.in_channels, out_channels=num_classes, stride=1)
self.conv1 = nn.Conv2d(num_classes, num_classes, kernel_size=1)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(num_classes, num_classes, kernel_size=1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_1, input_2):
x = torch.cat((input_1, input_2), dim=1)
assert self.in_channels == x.size(1), 'in_channels {} of ConvBlock should be {}'.format(self.in_channels,x.size(1))
feature = self.convblock(x)
x = torch.mean(feature, 3, keepdim=True)
x = torch.mean(x, 2 ,keepdim=True)
x = self.relu(self.conv1(x))
x = self.sigmoid(self.relu(x))
x = torch.mul(feature, x)
x = torch.add(x, feature)
return x
class BiSeNet(torch.nn.Module):
def __init__(self, num_classes, context_path):
super().__init__()
# build spatial path
self.saptial_path = Spatial_path()
# build context path
self.context_path = build_contextpath(name=context_path) #这里其实就是特征提取的基本网络,主要用到了res18和res101
# build attention refinement module
if con