使用log_softmax而不是softmax

  • log_softmax在理论上等于先softmax再log,但在实际使用中,后者会导致inf和nan
  • 举个例子
import torch
import torch.nn.functional as F

a=torch.tensor([0.01,999])
b=F.softmax(a,dim=0)       # tensor([0., 1.])
torch.log(b)               # tensor([-inf, 0.])
c=F.log_softmax(a,dim=0)   # tensor([-998.9900,    0.0000])
torch.exp(c)               # tensor([0., 1.])
  • 原因:log_softmax的公式是 ln ⁡ e x i e x 1 + . . . + e x n \ln \frac {e^{xi}} {e^{x1}+...+e^{xn}} ln
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刀么克瑟拉莫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值