环境与依赖
机器环境,使用 modelscope notebook测试
ubuntu22.04-cuda12.1.0-py311-torch2.3.1-tf2.16.1-1.27.0
1、安装 CUDA Toolkit
从 NVIDIA CUDA 官网下载并安装 CUDA Toolkit。确保选择与你的 GPU 驱动和操作系统版本兼容的版本。
2、安装 cuDNN
如果你计划进行深度学习任务,还需要安装 cuDNN。cuDNN 是 NVIDIA 提供的深度神经网络加速库,可以从 NVIDIA cuDNN 官网下载。
3、安装 Python 的 CUDA 绑定库
在 Python 中,cupy 和 torch 是两个常用的库,分别用于通用计算和深度学习。
pip install cupy-cudaXX
# 替换 XX 为你的 CUDA 版本号,例如 cupy-cuda113,并不是一一对应的,要去 https://pypi.org/search/?q=cupy-cuda 查看
pip install cupy-cuda12x
conda list cupy
# Name Version Build Channel
cupy-cuda12x 13.4.1 pypi_0 pypi
# For CUDA 11.2 ~ 11.x
pip install cupy-cuda11x
# For CUDA 12.x
pip install cupy-cuda12x
# For AMD ROCm 4.3
pip install cupy-rocm-4-3
# For AMD ROCm 5.0
pip install cupy-rocm-5-0
关于 cupy
pypi:https://pypi.org/project/cupy-cuda12x/
github:https://github.com/cupy/cupy
cupy官网:https://cupy.dev/
document:https://docs.cupy.dev/en/v13.4.1/
api reference:https://docs.cupy.dev/en/v13.4.1/reference/comparison.html
在使用方法上,可以大致将 Cupy 与 Numpy 对比,在多维数组/矩阵上进行加速,对比表 comparison table
import cupy as cp
x = cp.arange(6).reshape(2, 3).astype('f')
x.sum(axis=1)