python调用GPU,cupy

环境与依赖

机器环境,使用 modelscope notebook测试

在这里插入图片描述

ubuntu22.04-cuda12.1.0-py311-torch2.3.1-tf2.16.1-1.27.0

1、安装 CUDA Toolkit
NVIDIA CUDA 官网下载并安装 CUDA Toolkit。确保选择与你的 GPU 驱动和操作系统版本兼容的版本。

2、安装 cuDNN
如果你计划进行深度学习任务,还需要安装 cuDNN。cuDNN 是 NVIDIA 提供的深度神经网络加速库,可以从 NVIDIA cuDNN 官网下载。

3、安装 Python 的 CUDA 绑定库
在 Python 中,cupy 和 torch 是两个常用的库,分别用于通用计算和深度学习。

pip install cupy-cudaXX  
# 替换 XX 为你的 CUDA 版本号,例如 cupy-cuda113,并不是一一对应的,要去 https://pypi.org/search/?q=cupy-cuda 查看

pip install cupy-cuda12x

conda list cupy

# Name                    Version                   Build  Channel
cupy-cuda12x              13.4.1                   pypi_0    pypi
# For CUDA 11.2 ~ 11.x
pip install cupy-cuda11x

# For CUDA 12.x
pip install cupy-cuda12x

# For AMD ROCm 4.3
pip install cupy-rocm-4-3

# For AMD ROCm 5.0
pip install cupy-rocm-5-0

关于 cupy

pypi:https://pypi.org/project/cupy-cuda12x/

github:https://github.com/cupy/cupy

cupy官网:https://cupy.dev/

document:https://docs.cupy.dev/en/v13.4.1/

api reference:https://docs.cupy.dev/en/v13.4.1/reference/comparison.html

在使用方法上,可以大致将 Cupy 与 Numpy 对比,在多维数组/矩阵上进行加速,对比表 comparison table

import cupy as cp

x = cp.arange(6).reshape(2, 3).astype('f')
x.sum(axis=1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值