2021秋季《离散数学》_图的度与同构

本文介绍了图论中的基本概念,如顶点的度数、握手定理、最大度和最小度,以及如何从度数列判断是否能构造简单无向图。讨论了有向图的出度和入度,并阐述了Havel定理和Erdo¨s-Gallai定理在图化简中的应用。此外,提到了特殊类型的图,如完全图、偶图和超立方体图,以及图的子图和同构的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

省流小助手:

  • 判定度数列可否化为简单无向图,以及由度数列作图

顶点的度数与握手定理

无向图中,称viv_ivi作为边的端点的次数之和为viv_ivi度数(度),记为dG(vi)d_G(v_i)dG(vi),或简写为d(vi)d(v_i)d(vi).

每个环提供给它的端点2度。

有向图中,

  • viv_ivi作为边的始点的次数之和为viv_ivi出度,记为dD−(vi)d_D^{-}(v_i)dD(vi),或简写为d−(vi)d^-(v_i)d(vi).
  • viv_ivi作为边的始点的次数之和为viv_ivi入度,记为dD+(vi)d_D^{+}(v_i)dD+(vi),或简写为d+(vi)d^+(v_i)d+(vi).
  • 度:dD(vi)d_D(v_i)dD(vi),或简写为d(vi)=d−(vi)+d+(vi)d(v_i)=d^-(v_i)+d^+(v_i)d(vi)=d(vi)+d+(vi).

最大度和最小度

最大度Δ(G)=max⁡{d(v)∣v∈V}\Delta(G)=\max \{d(v)|v\in V\}Δ(G)=max{d(v)vV},简写为Δ\DeltaΔ.

最小度δ(G)=min⁡{d(v)∣v∈V}\delta(G)=\min\{d(v)|v\in V\}δ(G)=min{d(v)vV},简写为δ\deltaδ.

同理定义最大/小出/入度。

握手定理

G=<V,E>G=<V,E>G=<V,E>为任意一图(有向的或无向的),V={v1,v2,⋯ ,vn}V=\{v_1,v_2,\cdots,v_n\}V={v1,v2,,vn},边的条数∣E∣=m|E|=mE=m,则
∑i=1nd(vi)=2m \sum_{i=1}^n d(v_i)=2m i=1nd(vi)=2m

推论

任何图(有向的或无向的)中,度数为奇数的顶点个数是偶数。

有向图

∑i=1nd+(vi)=∑i=1nd−(vi)=m \sum_{i=1}^n d^+(v_i)=\sum_{i=1}^n d^-(v_i)=m i=1nd+(vi)=i=1nd(vi)=m

特殊的图

简单图

既无环也无平行边
0≤Δ(G)≤n−1 0\leq \Delta(G)\leq n-1 0Δ(G)n1

可简单图化

充要条件
Havel{\rm Havel}Havel定理

设非负整数列d={d1,d2,⋯ ,dn}d=\{d_1,d_2,\cdots,d_n\}d={d1,d2,,dn}满足:
d1+d2+⋯+dn≡0(mod  2) d_1+d_2+\cdots+d_n\equiv 0 (\mod 2) d1+d2++dn0(mod2)

n−1≥d1≥d2≥⋯≥dn≥0 n-1\geq d_1\geq d_2\geq\cdots\geq d_n\geq 0 n1d1d2dn0

ddd可简单图化⇔\Leftrightarrow
d′=(d2−1,d3−1,⋯ ,dd1+1−1,dd1+2,⋯ ,dn) d'=(d_2-1,d_3-1,\cdots ,d_{d_1+1}-1,d_{d_1+2},\cdots,d_n) d=(d21,d31,,dd1+11,dd1+2,,dn)
可简单图化。

在这里插入图片描述

画图

在这里插入图片描述

P.Erdo¨s,T.Gallai,1960{\rm P.Erd\ddot{o}s,T.Gallai,1960}P.Erdo¨s,T.Gallai,1960

设非负整数列d={d1,d2,⋯ ,dn}d=\{d_1,d_2,\cdots,d_n\}d={d1,d2,,dn}满足:
d1+d2+⋯+dn≡0(mod  2) d_1+d_2+\cdots+d_n\equiv 0 (\mod 2) d1+d2++dn0(mod2)

n−1≥d1≥d2≥⋯≥dn≥0 n-1\geq d_1\geq d_2\geq\cdots\geq d_n\geq 0 n1d1d2dn0

ddd可简单图化⇔\Leftrightarrow

r=1,2,⋯ ,r=1,2,\cdots,r=1,2,,==n−1n-1n1==有
d1+d2+⋯+dr≤r(r−1)+min⁡{r,dr+1}+min⁡{r,dr+2}+⋯+min⁡{r,dn} d_1+d_2+\cdots+d_r\leq r(r-1)+\min\{r,d_{r+1}\}+\min\{r,d_{r+2}\}+\cdots+\min\{r,d_{n}\} d1+d2++drr(r1)+min{r,dr+1}+min{r,dr+2}++min{r,dn}

等价形式

设非负整数列d={d1,d2,⋯ ,dn}d=\{d_1,d_2,\cdots,d_n\}d={d1,d2,,dn}满足:
d1+d2+⋯+dn≡0(mod  2) d_1+d_2+\cdots+d_n\equiv 0 (\mod 2) d1+d2++dn0(mod2)
ddd可简单图化⇔\Leftrightarrow

r=1,2,⋯ ,r=1,2,\cdots,r=1,2,,==nnn==有
d1+d2+⋯+dr≤r(r−1)+min⁡{r,dr+1}+min⁡{r,dr+2}+⋯+min⁡{r,dn} d_1+d_2+\cdots+d_r\leq r(r-1)+\min\{r,d_{r+1}\}+\min\{r,d_{r+2}\}+\cdots+\min\{r,d_{n}\} d1+d2++drr(r1)+min{r,dr+1}+min{r,dr+2}++min{r,dn}

k-正则图

所有顶点的度数都是kkk

完全图

无向完全图:KnK_nKn

有向完全图没有符号。

彼得森图

在这里插入图片描述

经常用来举反例(证明不充分/不必要)

r部图

顶点可以被分为rrr个部分的无向图V=V1∪V2∪⋯∪Vr,Vi∩Vj=∅(i≠j),E⊆i≠j=U(Vi&Vj)V=V_1\cup V_2\cup \cdots\cup V_r,V_i\cap V_j=\empty(i\neq j),E\subseteq_{i\neq j}=U(V_i\&V_j)V=V1V2Vr,ViVj=(i=j),Ei=j=U(Vi&Vj),也记作G=<V1,V2,⋯ ,Vr;E>G=<V_1,V_2,\cdots, V_r;E>G=<V1,V2,,Vr;E>.

偶图(2部图)

G=<V1,V2;E>G=<V_1,V_2;E>G=<V1,V2;E>

条件
  • V=V1∪V2,V1∩V2=∅V=V_1\cup V_2,V_1\cap V_2=\emptyV=V1V2,V1V2=
  • ∀e∈E,∣e∩V1∣=∣e∩V2∣=1\forall e\in E,|e\cap V_1|=|e\cap V_2|=1eE,eV1=eV2=1

常给资源分配问题建立模型

完全偶图

K∣V1∣,∣V2∣K_{|V_1|,|V_2|}KV1,V2

容易证明K∣V1∣,∣V2∣K_{|V_1|,|V_2|}KV1,V2∣V1∣∣V2∣|V_1||V_2|V1V2条边。

超立方体图

QnQ_nQn

  • 2n2^n2n个顶点

  • 将两个Qn−1Q_{n-1}Qn1的对应顶点连接,可得QnQ_nQn

在并行计算和超级计算中运用(处理器和处理器之间的连接)

子图

导出子图

选定顶点后需要带出所有的边/选定边后需要带出所有的顶点

图同构

无向图中,若存在双射f:V1→V2f:V_1\rightarrow V_2f:V1V2,满足∀u,v∈V1,(u,v)∈E1↔(f(u),f(v))∈E2\forall u,v\in V_1,(u,v)\in E_1\leftrightarrow(f(u),f(v))\in E_2u,vV1,(u,v)E1(f(u),f(v))E2,则称G1,G2G_1,G_2G1,G2同构,记作G1≅G2G_1\cong G_2G1G2.

有向图中,若存在双射f:V1→V2f:V_1\rightarrow V_2f:V1V2,满足∀u,v∈V1,<u,v>∈E1↔<f(u),f(v)>∈E2\forall u,v\in V_1,<u,v>\in E_1\leftrightarrow<f(u),f(v)>\in E_2u,vV1,<u,v>E1<f(u),f(v)>E2,则称D1,D2D_1,D_2D1,D2同构,记作D1≅D2D_1\cong D_2D1D2.

同构的图,其图论性质完全一致。

判定

NAUTY算法是性质非常好的算法

  • 点数、边数、度数列
  • 回路由多少顶点构成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值