省流小助手:
- 判定度数列可否化为简单无向图,以及由度数列作图
顶点的度数与握手定理
度
无向图中,称viv_ivi作为边的端点的次数之和为viv_ivi的度数(度),记为dG(vi)d_G(v_i)dG(vi),或简写为d(vi)d(v_i)d(vi).
每个环提供给它的端点2度。
有向图中,
- viv_ivi作为边的始点的次数之和为viv_ivi的出度,记为dD−(vi)d_D^{-}(v_i)dD−(vi),或简写为d−(vi)d^-(v_i)d−(vi).
- viv_ivi作为边的始点的次数之和为viv_ivi的入度,记为dD+(vi)d_D^{+}(v_i)dD+(vi),或简写为d+(vi)d^+(v_i)d+(vi).
- 度:dD(vi)d_D(v_i)dD(vi),或简写为d(vi)=d−(vi)+d+(vi)d(v_i)=d^-(v_i)+d^+(v_i)d(vi)=d−(vi)+d+(vi).
最大度和最小度
最大度Δ(G)=max{d(v)∣v∈V}\Delta(G)=\max \{d(v)|v\in V\}Δ(G)=max{d(v)∣v∈V},简写为Δ\DeltaΔ.
最小度δ(G)=min{d(v)∣v∈V}\delta(G)=\min\{d(v)|v\in V\}δ(G)=min{d(v)∣v∈V},简写为δ\deltaδ.
同理定义最大/小出/入度。
握手定理
设G=<V,E>G=<V,E>G=<V,E>为任意一图(有向的或无向的),V={v1,v2,⋯ ,vn}V=\{v_1,v_2,\cdots,v_n\}V={v1,v2,⋯,vn},边的条数∣E∣=m|E|=m∣E∣=m,则
∑i=1nd(vi)=2m
\sum_{i=1}^n d(v_i)=2m
i=1∑nd(vi)=2m
推论
任何图(有向的或无向的)中,度数为奇数的顶点个数是偶数。
有向图
∑i=1nd+(vi)=∑i=1nd−(vi)=m \sum_{i=1}^n d^+(v_i)=\sum_{i=1}^n d^-(v_i)=m i=1∑nd+(vi)=i=1∑nd−(vi)=m
特殊的图
简单图
既无环也无平行边
0≤Δ(G)≤n−1
0\leq \Delta(G)\leq n-1
0≤Δ(G)≤n−1
可简单图化
充要条件
Havel{\rm Havel}Havel定理
设非负整数列d={d1,d2,⋯ ,dn}d=\{d_1,d_2,\cdots,d_n\}d={d1,d2,⋯,dn}满足:
d1+d2+⋯+dn≡0(mod 2)
d_1+d_2+\cdots+d_n\equiv 0 (\mod 2)
d1+d2+⋯+dn≡0(mod2)
n−1≥d1≥d2≥⋯≥dn≥0 n-1\geq d_1\geq d_2\geq\cdots\geq d_n\geq 0 n−1≥d1≥d2≥⋯≥dn≥0
则ddd可简单图化⇔\Leftrightarrow⇔
d′=(d2−1,d3−1,⋯ ,dd1+1−1,dd1+2,⋯ ,dn)
d'=(d_2-1,d_3-1,\cdots ,d_{d_1+1}-1,d_{d_1+2},\cdots,d_n)
d′=(d2−1,d3−1,⋯,dd1+1−1,dd1+2,⋯,dn)
可简单图化。
画图
P.Erdo¨s,T.Gallai,1960{\rm P.Erd\ddot{o}s,T.Gallai,1960}P.Erdo¨s,T.Gallai,1960
设非负整数列d={d1,d2,⋯ ,dn}d=\{d_1,d_2,\cdots,d_n\}d={d1,d2,⋯,dn}满足:
d1+d2+⋯+dn≡0(mod 2)
d_1+d_2+\cdots+d_n\equiv 0 (\mod 2)
d1+d2+⋯+dn≡0(mod2)
n−1≥d1≥d2≥⋯≥dn≥0 n-1\geq d_1\geq d_2\geq\cdots\geq d_n\geq 0 n−1≥d1≥d2≥⋯≥dn≥0
则ddd可简单图化⇔\Leftrightarrow⇔
对r=1,2,⋯ ,r=1,2,\cdots,r=1,2,⋯,==n−1n-1n−1==有
d1+d2+⋯+dr≤r(r−1)+min{r,dr+1}+min{r,dr+2}+⋯+min{r,dn}
d_1+d_2+\cdots+d_r\leq r(r-1)+\min\{r,d_{r+1}\}+\min\{r,d_{r+2}\}+\cdots+\min\{r,d_{n}\}
d1+d2+⋯+dr≤r(r−1)+min{r,dr+1}+min{r,dr+2}+⋯+min{r,dn}
等价形式
设非负整数列d={d1,d2,⋯ ,dn}d=\{d_1,d_2,\cdots,d_n\}d={d1,d2,⋯,dn}满足:
d1+d2+⋯+dn≡0(mod 2)
d_1+d_2+\cdots+d_n\equiv 0 (\mod 2)
d1+d2+⋯+dn≡0(mod2)
则ddd可简单图化⇔\Leftrightarrow⇔
对r=1,2,⋯ ,r=1,2,\cdots,r=1,2,⋯,==nnn==有
d1+d2+⋯+dr≤r(r−1)+min{r,dr+1}+min{r,dr+2}+⋯+min{r,dn}
d_1+d_2+\cdots+d_r\leq r(r-1)+\min\{r,d_{r+1}\}+\min\{r,d_{r+2}\}+\cdots+\min\{r,d_{n}\}
d1+d2+⋯+dr≤r(r−1)+min{r,dr+1}+min{r,dr+2}+⋯+min{r,dn}
k-正则图
所有顶点的度数都是kkk
完全图
无向完全图:KnK_nKn
有向完全图没有符号。
彼得森图
经常用来举反例(证明不充分/不必要)
r部图
顶点可以被分为rrr个部分的无向图,V=V1∪V2∪⋯∪Vr,Vi∩Vj=∅(i≠j),E⊆i≠j=U(Vi&Vj)V=V_1\cup V_2\cup \cdots\cup V_r,V_i\cap V_j=\empty(i\neq j),E\subseteq_{i\neq j}=U(V_i\&V_j)V=V1∪V2∪⋯∪Vr,Vi∩Vj=∅(i=j),E⊆i=j=U(Vi&Vj),也记作G=<V1,V2,⋯ ,Vr;E>G=<V_1,V_2,\cdots, V_r;E>G=<V1,V2,⋯,Vr;E>.
偶图(2部图)
G=<V1,V2;E>G=<V_1,V_2;E>G=<V1,V2;E>
条件
- V=V1∪V2,V1∩V2=∅V=V_1\cup V_2,V_1\cap V_2=\emptyV=V1∪V2,V1∩V2=∅
- ∀e∈E,∣e∩V1∣=∣e∩V2∣=1\forall e\in E,|e\cap V_1|=|e\cap V_2|=1∀e∈E,∣e∩V1∣=∣e∩V2∣=1
常给资源分配问题建立模型
完全偶图
K∣V1∣,∣V2∣K_{|V_1|,|V_2|}K∣V1∣,∣V2∣
容易证明K∣V1∣,∣V2∣K_{|V_1|,|V_2|}K∣V1∣,∣V2∣有∣V1∣∣V2∣|V_1||V_2|∣V1∣∣V2∣条边。
超立方体图
QnQ_nQn
-
有2n2^n2n个顶点
-
将两个Qn−1Q_{n-1}Qn−1的对应顶点连接,可得QnQ_nQn
在并行计算和超级计算中运用(处理器和处理器之间的连接)
子图
导出子图
选定顶点后需要带出所有的边/选定边后需要带出所有的顶点
图同构
无向图中,若存在双射f:V1→V2f:V_1\rightarrow V_2f:V1→V2,满足∀u,v∈V1,(u,v)∈E1↔(f(u),f(v))∈E2\forall u,v\in V_1,(u,v)\in E_1\leftrightarrow(f(u),f(v))\in E_2∀u,v∈V1,(u,v)∈E1↔(f(u),f(v))∈E2,则称G1,G2G_1,G_2G1,G2同构,记作G1≅G2G_1\cong G_2G1≅G2.
有向图中,若存在双射f:V1→V2f:V_1\rightarrow V_2f:V1→V2,满足∀u,v∈V1,<u,v>∈E1↔<f(u),f(v)>∈E2\forall u,v\in V_1,<u,v>\in E_1\leftrightarrow<f(u),f(v)>\in E_2∀u,v∈V1,<u,v>∈E1↔<f(u),f(v)>∈E2,则称D1,D2D_1,D_2D1,D2同构,记作D1≅D2D_1\cong D_2D1≅D2.
同构的图,其图论性质完全一致。
判定
NAUTY算法是性质非常好的算法
- 点数、边数、度数列
- 回路由多少顶点构成