阿尔茨海默病自动分类与移动应用延迟问题研究
1. 阿尔茨海默病自动分类研究
1.1 不同模型对比结果
在利用 MRI 进行阿尔茨海默病(AD)自动分类的研究中,对比了多种模型的性能,具体结果如下表所示:
|作者(年份)|成像方式|分类方法|验证方法|准确率(%)|敏感度(%)|特异度(%)|
| ---- | ---- | ---- | ---- | ---- | ---- | ---- |
|Farhan 等人 [30]|MRI|SVM + MLP + J48|10 - 折交叉验证|93.75|87.5|100|
|Xiao 等人 [31]|MRI|SVM - RFE|10 - 折交叉验证|92.86|87.04|98.28|
|Taqi 等人 [32]|MRI|KNN + SVM| - |91.4|83.3| - |
|Zhang 等人 [6]|MRI|DWT + PCA + KSVM + RBF|5 - 折交叉验证|91.33|92.47|72|
|Jha 等人 [10]|MRI|DWT + PCA + LR|5 - 折交叉验证|97.0|98.00|80|
|提出的模型|MRI|AlexNet + TL|10 - 折交叉验证|97.2|98.12|81|
从表中可以看出,提出的基于 AlexNet + TL 的模型在准确率和敏感度上表现较好。
1.2 提出模型与现有方法对比分析
提出的 AlexNet 结合迁移学习(TL)方法与近期的方法进行了实验分析。迁移学习方法在准确性和速度上都优于从头开始训练的方法,原因在于训练模型的样本数量有限,容易导致