互联网中非响应流的拥塞控制机制与系统日志异常检测综述
1. 拥塞控制机制相关变量与算法
在互联网拥塞控制机制中,有几个关键变量:
- RQave :队列的平均大小
- Rpa :传入数据包的概率百分比
- maxth :最大阈值
- minth :最小阈值
下面介绍几种常见的拥塞控制算法:
- 基于流的随机早期检测(FRED) :由Lin和Morris创建,是一种基于流的RED算法。它通过安排最高级别的临时内存空间,并将其中一部分超过流持有区域使用的平均数据包速率,来改变非自适应流。该算法能照顾到传输容量较小的预定流,通过消耗多个缓冲区为更多的信息流序列提供合理分配,测量入站和出站缓冲区的队列平均长度,解决了随机早期检测算法的许多问题。
- BLUE :由Wu - Chang和Feng开发,是RED的另一种扩展。它使用数据包丢失和链路利用率作为控制变量来衡量网络拥塞,用信道使用率和移除数据包百分比代替当前队列的平均长度,以提高效率。该算法会计算丢弃数据包的概率并写在每个传入数据包上,队列处于移除传入数据包状态时,丢弃数据包的概率会增加,反之则降低。不过,它存在无法早期检测拥塞、响应慢等问题,且无法识别TCP和UDP流,不能处理流量波动。
2. CHOKe及其衍生算法
为克服上述算法的局限性,引入了CHOKe算法。“为响应式信息流选择并保留,为非响应式信息流选择并丢弃”是CH