物联网中入侵分类与静脉输液监测系统研究
物联网入侵分类相关内容
在物联网安全领域,对基于RPL(Routing Protocol for Low-Power and Lossy Networks)的物联网中的入侵进行分类是一项重要的研究。以下将详细介绍相关技术和方法。
数据预处理
- 数据归一化 :在训练过程中,为避免较小值的输入变量被较大值的变量“淹没”,需要去除较高值的输入变量。若将原始输入变量直接输入神经网络,模拟神经元可能会饱和。当网络中的神经元饱和时,输入的修改只会导致输出的微小变化或无变化,这会严重干扰网络的训练,并引发一些无关的错误。为减少神经元饱和带来的影响,在将输入数据输入神经网络之前,应先对其进行归一化处理。
- 特征选择 :此过程包括删除无关、不需要和重复的变量。非必要的数据会影响性能参数,如准确性。特征选择的输出是数据的最佳表示,它还能帮助学习解决根本问题的方法。如果跳过特征选择这一步,会对预测模型的准确性产生破坏性影响。
模型训练与测试
- 网络训练和测试 :确定系统的正确结构后,应使用训练数据集对模型进行训练,以掌握输入和输出之间的联系。训练完成后,需使用测试数据对网络进行测试,以评估其泛化能力。
- 攻击类检测 :NSL - KDD数据集中有四种攻击类型,分别是DoS(Denial - of - Service)、U2R(User - to - Root)、R2L(Remote -