read5
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
76、物联网中入侵分类与静脉输液监测系统研究
本研究探讨了物联网环境下的网络安全与医疗监测两个重要领域。在入侵检测方面,基于RPL协议的物联网网络中,利用LSTM和BiLSTM模型对NSL-KDD数据集进行入侵分类,实验结果表明BiLSTM具有更高的准确率(96.24%)和较低的损失率,优于传统机器学习分类器。在医疗监测方面,提出了一种基于物联网的静脉输液自动监测系统,通过流量传感器、液位监测和自动警报机制,有效防止血液逆流,提高输液安全并减轻医护人员负担。系统可应用于医院及家庭护理,具有广阔的发展前景。研究结果展示了物联网技术在网络安全和智能医疗中的原创 2025-07-21 16:07:22 · 14 阅读 · 0 评论 -
75、机器学习在情感分析与物联网入侵检测中的应用
本文探讨了机器学习在情感分析和物联网入侵检测中的应用。在情感分析部分,提出了一种基于SenticNet的特征加权方案,通过引入单词极性信息提升了分类性能,并对比了不同分类器(如朴素贝叶斯和支持向量机)的效果。在物联网入侵检测方面,研究使用了LSTM和双向LSTM模型进行攻击分类,以减少误分类并提高准确率。文章还详细介绍了数据预处理、特征选择、模型训练与评估等关键步骤,并对未来的优化方向进行了展望。原创 2025-07-20 14:10:57 · 13 阅读 · 0 评论 -
74、问题分类与情感分类的综合分析
本文详细介绍了问题分类和情感分类在自然语言处理中的应用与方法。问题分类部分使用Quora提供的大规模数据集,通过词嵌入技术(如Word2vec、GloVe和fastText)和分类器(如LSTM和朴素贝叶斯)将问题分为真诚或不真诚;情感分类部分则引入SenticNet来识别评论的情感倾向,使用SVM或朴素贝叶斯进行分类。文章还对比了两种分类方法的异同,并探讨了性能提升的关键因素以及未来发展方向,如结合注意力机制、多模态融合和领域自适应等。原创 2025-07-19 15:35:56 · 13 阅读 · 0 评论 -
73、密码哈希算法与问题分类的综合分析
本文综合探讨了密码哈希算法在数据处理和存储中的应用,以及机器学习和深度学习方法在问题分类任务中的实践。文章详细分析了不同哈希算法的特性、应用场景和安全性,并通过实验展示了哈希算法在图像识别中的雪崩效应。此外,还介绍了多种问题分类模型,包括支持向量机、朴素贝叶斯、逻辑回归和循环神经网络,并讨论了模型优化策略和评估方法。最后,文章总结了两种技术的重要性,并展望了未来的发展方向。原创 2025-07-18 14:01:36 · 28 阅读 · 0 评论 -
71、银行数据挖掘与客户行为分析
本博客围绕银行数据挖掘与客户行为分析展开,探讨了客户选择定期存款的影响因素,并通过逻辑回归和决策树方法进行数据分析,得出提高客户余额和业务时长、控制营销活动数量等建议。同时,博客还涉及云数据审计相关内容,强调通过加密技术和第三方审计保障数据安全,为银行业务和云计算的可持续发展提供了有力支持。原创 2025-07-16 15:30:19 · 9 阅读 · 0 评论 -
70、系统生成日志的异常检测及银行定期存款分析
本博客主要探讨系统生成日志的异常检测方法以及银行定期存款分析策略。在日志异常检测部分,介绍了包括Elasticsearch与Kibana云监控、基于LSTM的自动编码器模型、LogEvent2vec结合机器学习模型等方法,并补充了Template2vec与K-prototype聚类等其他技术。在银行领域,重点分析了如何通过逻辑回归与决策树分类器提升客户满意度,并制定增加定期存款的有效策略。这些方法在不同场景下具有实际应用价值,有助于提升系统稳定性与银行业务绩效。原创 2025-07-15 10:29:05 · 8 阅读 · 0 评论 -
69、系统生成日志的异常检测研究
本博文围绕系统生成日志的异常检测展开研究,详细介绍了日志数据的特点与分析挑战,明确了点异常、条件异常和集体异常三种主要异常类型。文章系统地梳理了包括统计方法、监督学习和无监督学习在内的异常分析方法,并结合近年来多个研究案例,分析了不同方法的优缺点及适用场景。同时,文章总结了当前异常检测面临的挑战,如数据复杂性、异常定义多样性、数据标注困难等,并展望了未来研究方向,如融合多种方法、自适应学习和可视化分析。最后,文章强调了异常检测在系统性能监控和安全保障中的重要作用,并指出随着技术的发展,更高效、精准的检测方法原创 2025-07-14 15:05:01 · 11 阅读 · 0 评论 -
68、互联网中非响应流的拥塞控制机制与系统日志异常检测综述
本文综述了互联网中非响应流的拥塞控制机制及系统日志异常检测的研究进展。重点介绍了拥塞控制算法中的关键变量、CHOKe及其衍生算法的工作原理,以及不同主动队列管理方法的优缺点。同时,文章探讨了系统日志异常检测的监督和无监督方法、应用场景及未来发展方向,为网络拥塞控制和系统异常检测提供了全面的技术参考。原创 2025-07-13 10:33:29 · 8 阅读 · 0 评论 -
67、高效内存自适应最优二叉搜索树与网络拥塞控制研究
本文探讨了高效内存自适应最优二叉搜索树(AOBT)在IPv6查找中的应用,以及主动队列管理(AQM)在处理网络无响应流方面的机制。通过FPGA实现AOBT-IL结构,验证其在内存消耗和性能上的优势,并结合AQM方法如RED算法,实现高效的网络拥塞控制。研究为未来网络性能优化和虚拟化提供了参考方向。原创 2025-07-12 10:38:40 · 7 阅读 · 0 评论 -
66、网络技术新突破:VLAN与AOBT-IL架构解析
本文介绍了VLAN和基于自适应最优二叉搜索树(AOBT)的IPv6查找架构(AOBT-IL)在网络技术中的应用与优势。VLAN通过逻辑分段解决广播域带来的流量拥塞和安全问题,提高网络性能与管理效率;AOBT-IL则通过创新的数据结构和算法优化IPv6地址查找效率,提升内存利用率和查找吞吐量。文章还探讨了两种技术的适用场景、未来发展趋势以及实际操作建议,为构建高效、安全的网络环境提供参考。原创 2025-07-11 09:00:28 · 23 阅读 · 0 评论 -
65、虚拟局域网(VLAN)的深入分析及其优势
本文深入探讨了虚拟局域网(VLAN)的技术细节、优势及其在校园和企业网络中的实际应用。内容涵盖VLAN的基本概念、类型、分配方法、交换机端口模式、跨VLAN路由配置,以及通过Packet Tracer进行实验验证的过程。同时,文章还介绍了VLAN的优化维护策略、常见问题解决方案,并展望了其未来发展趋势,旨在帮助读者构建高效、安全的网络环境。原创 2025-07-10 10:57:32 · 14 阅读 · 0 评论 -
64、基于自动生成释义和循环神经网络的语言隐写术及虚拟局域网技术分析
本文探讨了语言隐写术和虚拟局域网(VLAN)技术在数据安全和网络优化中的应用。语言隐写术通过将信息隐藏在多媒体数据中,提高了数据传输的安全性;而VLAN技术通过逻辑分组优化了网络管理和安全性。文章分析了这两种技术的原理、优势、挑战及综合应用前景,并提供了相关操作步骤和未来发展趋势。原创 2025-07-09 14:42:31 · 7 阅读 · 0 评论 -
63、云与雾计算环境下电子健康应用的挑战与机遇
本文探讨了云与雾计算环境下电子健康应用的发展机遇与挑战。重点分析了雾计算在实时电子健康应用中的优势,以及云与雾计算相关技术在医疗物联网(IoMT)系统中的应用。同时,文章综述了基于物联网的远程健康监测解决方案,并讨论了当前面临的如数据安全、算法精度、功率优化和延迟等关键问题。最后,文章展望了未来结合云计算、雾计算和边缘计算的创新研究方向。原创 2025-07-08 11:56:05 · 8 阅读 · 0 评论 -
62、在线社交网络与电子医疗的安全挑战及应对策略
本文探讨了在线社交网络和电子医疗领域中的安全挑战及应对策略。针对在线社交网络,分析了社交钓鱼攻击的威胁,并介绍了多种反钓鱼技术,包括启发式策略、黑名单策略、相似文本策略、机器学习策略等,同时提出了一个综合检测流程。在电子医疗方面,比较了云计算与雾计算的应用模式,强调雾计算在低延迟和实时决策中的优势,并探讨了未来发展方向,包括增强安全性、智能化分析和标准化建设。文章指出,面对日益复杂的安全威胁,需要通过多维度检测、用户教育和技术创新来保障用户隐私和数据安全。原创 2025-07-07 12:39:14 · 9 阅读 · 0 评论 -
61、基于机器学习的乳腺癌检测
本文探讨了基于机器学习的乳腺癌检测方法,分析了传统检测方法的局限性,并提出了一种结合传感器技术、图像处理和SVM分类算法的新型检测系统。通过实验验证,该方法在准确率、灵敏度和特异性方面表现出色,为乳腺癌的早期诊断提供了有效支持。未来的研究方向包括多模态数据融合、深度学习应用和个性化医疗。原创 2025-07-06 15:34:35 · 24 阅读 · 0 评论 -
60、阿尔茨海默病自动分类与移动应用延迟问题研究
本研究探讨了阿尔茨海默病(AD)的自动分类模型与移动应用中的延迟问题。在AD分类方面,通过对比不同模型的性能,提出了基于AlexNet与迁移学习(TL)的改进模型,该模型在准确率和敏感度上表现优异。同时,针对移动应用延迟问题,分析了影响因素并提出解决方案,包括数据压缩、网络选择和设备优化。研究为医学自动诊断和移动应用性能优化提供了理论支持与实践指导。原创 2025-07-05 10:23:01 · 8 阅读 · 0 评论 -
59、基于MRI的阿尔茨海默病自动分类方法研究
本文提出了一种基于3D卷积神经网络(3D CNN)和迁移学习的阿尔茨海默病(AD)自动分类方法。通过引入预训练的AlexNet架构,并对其进行修改和微调,结合ADNI数据集中的MRI图像和临床数据,构建了一个高效的AD分类模型。实验结果表明,该模型在准确率、特异性和敏感性方面表现优异,准确率达到97.80%。研究还探讨了不同网络结构和超参数对模型性能的影响,验证了迁移学习在减少训练时间和避免过拟合方面的有效性。原创 2025-07-04 16:51:04 · 22 阅读 · 0 评论 -
58、利用MRI和迁移学习实现阿尔茨海默病的自动分类
本文提出了一种基于预训练AlexNet卷积神经网络和迁移学习的自动分类模型,用于利用MRI脑图像检测阿尔茨海默病(AD)。随着全球AD患者数量的快速增长,传统依赖放射科医生手动诊断的方式已难以满足需求,因此设计了高效的计算机辅助诊断(CAD)方法。该模型通过修改AlexNet的softmax层并结合迁移学习技术,提高了AD分类的准确性,同时减少了预处理复杂性和结果的不可靠性。实验基于ADNI数据集,结果显示该模型在准确率、敏感性和特异性方面均优于传统机器学习和其他深度学习方法。未来的研究将优化模型架构并结合原创 2025-07-03 12:16:25 · 22 阅读 · 0 评论 -
57、使用IPSL工具进行IMS - LTE的Diameter呼叫仿真开发
本文探讨了在IP多媒体子系统(IMS)和LTE网络中使用Diameter协议进行呼叫仿真开发的过程。重点分析了Diameter协议及其在IMS-LTE网络中的作用,包括S6a和Sh接口的功能,以及位置管理和SIP注册的流程。通过独立协议模拟器语言(IPSL)工具实现了Diameter呼叫流程的仿真,并使用Wireshark捕获跟踪信息进行分析。文章为未来多用户注册仿真、VoLTE呼叫流程仿真及协议优化提供了研究方向。原创 2025-07-02 13:04:36 · 13 阅读 · 0 评论 -
56、基于区块链的学术记录数字化管理系统
本文探讨了基于区块链技术的学术记录数字化管理系统,旨在解决日益严重的学术造假问题以及传统文件认证流程的低效和繁琐。通过利用区块链的透明性、安全性和去中心化特性,该系统提供了一个可信的平台,用于存储、验证和认证学术文件。系统原型基于IBM Hyperledger Fabric构建,并采用MVC架构实现,涵盖了学生、高等教育机构、大学、监管机构、人力部和雇主等多方参与。文章还介绍了系统的设计流程、优势、应用前景以及开源代码的可用性,为推动学术记录管理的现代化和规范化提供了参考。原创 2025-07-01 10:30:11 · 6 阅读 · 0 评论 -
55、数据中心网络的数据复制与学术记录管理方案
本文探讨了数据中心网络中的数据复制协议和基于区块链技术的学术记录管理方案。数据复制协议通过信息估计和协作缓存技术优化数据可用性和查询效率,同时考虑节点资源和网络拓扑结构。学术记录管理方案利用区块链的分布式账本特性,确保学术记录的真实性、完整性和可验证性。方案涵盖了系统架构、实施步骤、风险应对措施及未来发展趋势,为数据中心和教育领域提供了高效、安全的解决方案。原创 2025-06-30 12:02:10 · 7 阅读 · 0 评论 -
54、高可用性分布式计算网络的数据复制协议解析
本文探讨了一种新的高可用性分布式计算网络(DCN)数据复制协议,旨在解决网络分区和可扩展性问题。协议通过数据复制、分区预测和可扩展性设计,在提高数据可用性的同时降低查询成本,并考虑了能源消耗和数据一致性等挑战。文章还详细解析了数据分类、复制算法以及实际应用中的优化策略,为未来分布式网络的智能化管理提供了参考。原创 2025-06-29 11:54:36 · 10 阅读 · 0 评论 -
53、基于LIDAR的避障测距、管道损伤监测及DCN数据可用性提升技术解析
本文详细解析了基于LIDAR的避障测距技术、管道损伤的导纳监测方法以及用于提升数据中心网络(DCN)数据可用性的新型复制协议。LIDAR技术通过高精度测距和SLAM算法为自动驾驶和机器人导航提供安全保障;管道损伤监测利用机电阻抗技术实现对工业管道的实时健康检测;而新型复制协议则通过智能算法提升DCN的数据访问效率和可靠性。文章还探讨了这些技术的应用场景及未来发展趋势,展示了其在多个领域的广泛应用前景。原创 2025-06-28 15:54:48 · 9 阅读 · 0 评论 -
52、可解释人工智能框架对比与激光雷达在自动驾驶中的应用
本文探讨了可解释人工智能(XAI)的三种框架LIME、ELI5和SHAP在机器学习模型解释中的应用,并深入分析了它们的工作原理和适用场景。同时,文章介绍了激光雷达(LIDAR)在自动驾驶中的关键技术,包括障碍物检测与避免算法,并提出了优化方向和未来发展趋势。研究旨在提高人工智能模型的透明度和自动驾驶系统的安全性,为智能交通的发展提供技术支持。原创 2025-06-27 15:29:34 · 10 阅读 · 0 评论 -
51、无线传感器网络能耗分析与机器学习模型解释策略
本博文主要探讨了无线传感器网络(WSN)中的能耗管理策略以及机器学习模型的事后解释方法。在WSN部分,分析了静态节点和动态节点的能耗特点,比较了直接通信、LEACH算法及基于距离和能量的簇头选举算法的能耗效果,旨在延长节点寿命。在机器学习模型解释方面,比较了ELI5、LIME和SHAP三种框架的解释方法及其适用场景。最后,提出了未来将WSN能耗管理与机器学习模型解释相结合的展望,以实现更智能高效的系统。原创 2025-06-26 09:34:04 · 10 阅读 · 0 评论 -
50、不同组合的误码率性能比较及无线传感器网络能耗分析
本博客探讨了多种通信技术在误码率(BER)性能和无线传感器网络(WSN)能耗方面的表现。首先分析了多级调制方案、空时块码(STBC)和差分混沌键控(DCSK)等技术的原理及优势,并提出了基于混沌信号的DCSK、ODCSK与STBC/OSTBC组合方法。通过MATLAB仿真,比较了不同组合在独立比特与独立样本方法下的误码率性能,结果表明ODCSK with Alamouti STBC在独立样本方法中表现最佳。此外,博客还介绍了WSN的基本概念,并对LEACH算法、基于距离的算法和基于距离与能量的算法进行了能耗原创 2025-06-25 16:49:42 · 9 阅读 · 0 评论 -
49、基于混合加密和人脸识别的文件安全及通信系统研究
本文研究了一种结合混合加密和人脸识别的文件安全系统,以及一种将空时分组码(STBC)与正交差分混沌键控(ODCSK)结合的多输入多输出(MIMO)无线通信系统。文件安全系统利用AES、Blowfish和Twofish算法进行混合加密,并通过人脸识别增加第二层安全保障;通信系统则通过STBC和ODCSK技术结合,提高了无线传输的安全性和性能。实验结果表明,这些方法在加密速度、解密效率以及误码率控制方面均表现优异,为未来数据安全和通信系统的发展提供了可靠的技术支持。原创 2025-06-24 11:31:51 · 7 阅读 · 0 评论 -
48、物联网与文件安全的加密解决方案
本博客探讨了物联网与文件安全中的加密解决方案。分析了物联网安全的挑战及其对资源受限设备的影响,介绍了轻量级加密技术,尤其是基于椭圆曲线加密(ECC)与Karatsuba算法优化的OECC-KA算法,有效提升了物联网设备的加密性能。同时,博客提出了一种结合混合加密和实时人脸识别的文件安全系统,通过AES、Blowfish和Twofish三种对称加密算法与人脸识别技术相结合,实现多层次数据保护。最后,讨论了这些技术的优势、挑战以及未来发展方向,强调了加密技术在物联网和数据安全领域的重要作用。原创 2025-06-23 09:39:18 · 9 阅读 · 0 评论 -
47、社交物联网中基于信任和优化的RPL路由方法
本文提出了一种社交物联网中基于信任和优化的RPL路由方法,解决了传统方法在数据路由、设备信任值评估和设备定位方面的局限性。通过结合信任模型和蜻蜓优化算法,该方法实现了更高效的设备定位和信息路由,同时提升了网络寿命和能源效率。实验结果表明,该方法在三角参与率、模块化得分、设备定位成功率等关键指标上优于现有技术,具有广泛的应用前景,适用于智能家居、工业物联网和智能医疗等场景。原创 2025-06-22 15:50:42 · 9 阅读 · 0 评论 -
46、洪水预测与社交物联网网络路由优化
本文综述了洪水预测和社交物联网网络路由优化的研究进展。在洪水预测方面,介绍了多种模型方法及其应用,包括快速评估模型、贝叶斯模型平均方法以及基于深度学习的预测模型,并探讨了影响预测精度的关键因素。在社交物联网领域,分析了现有研究方法及其局限性,如信任计算、数据分类优化、多路由方案组合和基于信任与连接性的方法,并指出设备定位与路由分离、资源消耗高、节点选择受限等问题。针对上述问题,提出了一种基于信任社区和优化RPL协议的解决方案,详细阐述了信任社区的构建、RPL协议的改进以及具体实现步骤。实验结果表明,该方案显原创 2025-06-21 13:59:49 · 8 阅读 · 0 评论 -
45、基于多模态优化的洪水预测建模
本博客介绍了一种基于多模态优化的新型洪水预测建模方法。传统方法如蒙特卡罗过程和结构支持向量机存在处理效率低、预测准确性不足等问题,而新方法结合了回归学习与多源数据(包括卫星图像、水位计数据、社交媒体推文和百年洪水记录),显著提高了洪水预测的准确性和实用性。博客详细阐述了实验方法、技术优势、实际应用案例及未来优化方向,为洪水预警和灾害管理提供了高效可靠的解决方案。原创 2025-06-20 12:06:57 · 8 阅读 · 0 评论 -
44、垃圾机器人检测与洪水预测技术解析
本文深入解析了垃圾机器人检测与洪水预测两大技术领域。在垃圾机器人检测方面,基于萤火虫优化的广义回归神经网络(GWO-GRNN)方法在准确率、灵敏度、特异性等指标上均优于深度Q学习(DQL)方法,同时计算时间更短;在洪水预测方面,结合图像分析和数据挖掘的新方法提高了预测准确性,并通过社交媒体及时传播预警信息。文章还对比分析了两种技术的优势与挑战,展望了其未来的发展潜力。原创 2025-06-19 09:47:50 · 8 阅读 · 0 评论 -
43、基于萤火虫优化和广义回归神经网络的Twitter垃圾机器人检测方法
本文提出了一种基于萤火虫优化(GWO)和广义回归神经网络(GRNN)的Twitter垃圾机器人检测方法。通过萤火虫优化算法对用户属性和推文属性中的关键特征进行选择,减少特征数量并降低计算复杂度,再利用GRNN进行高效分类,提高了检测准确率并缩短了训练时间。该方法在社交蜜罐数据集上进行了验证,结果显示其在准确率、召回率和F值等评估指标上均优于现有方法,为社交媒体平台的垃圾账号治理提供了新的解决方案。原创 2025-06-18 13:25:38 · 8 阅读 · 0 评论 -
42、智能农业与社交网络垃圾机器人检测技术解析
本博文深入探讨了智能农业和社交网络垃圾机器人检测技术。在智能农业部分,详细介绍了电气和电磁技术、光学技术、声学和气动技术以及电化学技术在土壤特性评估、养分检测和精准农业管理中的应用。同时,总结了这些技术如何助力提高作物产量并减少资源浪费。在社交网络部分,分析了垃圾机器人检测的现有方法与新方法,重点介绍了基于萤火虫优化算法和广义回归神经网络的分类方法,并比较了其性能优势。最后,展望了这两项技术的未来发展和应用前景。原创 2025-06-17 14:02:51 · 9 阅读 · 0 评论 -
41、智慧农业中的无线传感器网络与仪器技术综述
本文综述了智慧农业中无线传感器网络与仪器技术的应用与发展。文章详细介绍了多种传感器的工作原理及在农业中的具体应用,包括电磁、光学、机械、声学、气流和电化学传感器等。此外,还讨论了无线传感器网络在智慧农业中的应用优势、面临的挑战及解决方案,并展望了未来发展趋势。通过这些技术,农业可以实现高效、绿色和可持续发展,推动农业现代化转型。原创 2025-06-16 11:08:50 · 13 阅读 · 0 评论 -
40、NoSQL文档存储中模式设计的影响
本文探讨了NoSQL文档存储中模式设计对数据库大小、查询性能和能耗的影响。通过在MongoDB 4.4上进行实验,分析了不同结构化模式(如父嵌入、子嵌入、去规范化等)在存储需求、性能和能耗方面的表现,并比较了数据库级连接和应用程序级连接的优劣。文章为开发者提供了模式选择建议,并展望了未来研究方向,包括自动化模式设计工具、能耗模型研究及多目标优化算法开发。原创 2025-06-15 16:02:12 · 5 阅读 · 0 评论 -
39、文献引用推荐系统与NoSQL文档存储架构设计影响分析
本文探讨了文献引用推荐系统和NoSQL文档存储架构设计的相关研究。在文献引用推荐系统方面,介绍了多种现有方法,并提出了一种基于强化学习的新框架(DRRC),通过实验验证其在Recall@N值上的优越性能。在NoSQL文档存储方面,分析了架构设计的重要性,讨论了数据建模模式及其对查询性能和能源消耗的影响,并通过实验和流程图帮助开发者做出更合理的架构选择。原创 2025-06-14 11:38:40 · 10 阅读 · 0 评论 -
38、乳腺癌检测与文献引用推荐模型研究
本博客围绕乳腺癌检测模型和文献引用推荐系统展开,介绍了基于GoogLeNet的乳腺癌检测模型在医学图像分类中的应用,以及基于深度强化学习的文献引用推荐系统的构建与优化。两个系统分别处理医学图像数据和科研文本数据,具有重要的实际应用价值。文章还对比了两者的异同点,并探讨了它们的挑战与未来发展趋势,包括多模态数据融合、个性化推荐、知识图谱结合等方向。原创 2025-06-13 13:44:11 · 9 阅读 · 0 评论 -
37、基于正常乳房X光片的深度学习建模预测乳腺癌
本博文探讨了一种基于深度学习的乳腺癌预测方法,提出了一种结合GoogLeNet和线性判别分析(LDA)的新型计算机辅助诊断(CAD)模型。通过物联网设备获取数据,并利用深度学习技术进行特征提取和分类,旨在提高乳腺癌早期检测的准确性和效率。文章还对比了传统CAD系统和深度学习模型的应用现状,分析了新方法的优势,并展望了未来的研究方向和发展潜力。原创 2025-06-12 09:32:19 · 7 阅读 · 0 评论 -
36、人工神经网络中的权重优化:改进的帝王蝶优化算法
本文提出了一种改进的帝王蝶优化算法(MBOQRL),通过引入准反射学习(QRL)机制,有效解决了原始MBO算法在探索和开发之间的平衡问题,提高了神经网络训练的收敛速度和优化效果。实验表明,MBOQRL在多个基准数据集上的分类准确率优于其他元启发式优化算法,展现出良好的适应性和稳定性。原创 2025-06-11 13:58:07 · 7 阅读 · 0 评论