基于 Rust 实现简单、快速、轻量级的 AI Agent 框架 Rig

你好,我是渔夫。

这几天 AI Agent 生态进入爆发期,有个叫 Rig 非常抢眼,它是基于 Rust 构建的 AI 应用开发专业框架。与它类似还有个叫 ELIZA 框架,本文主要介绍 Rig。

什么是 Rig?

Rig(ARC) 是一个基于 Rust 优势面向 LLM 工作流引擎的 AI 系统构建框架,目的是要解决更底层的性能优化问题。值得关注的一个框架。

Rig 进行 AI 开发优势

选择 Rig 可以更高效地开发,拥有着类型安全的 API ,可以减少运行是报错,异步优先设计,让你的资源得到最佳利用率。它与 Rust 生态如 Tokio、Serde 等无缝集成。

Rig 核心功能

**1.统一 LLM 接口:**支持跨不同 LLM 提供商的一致 API ,简化集成和减少供应商的锁定。

**2.Rust 驱动的卓越性能:**基于 Rust 优势,零成本抽象、内存安全、高性能的 LLM 操作。

**3.高级 AI 工作流抽象:**实施复杂的 AI system,比如 RAG 和多 Agent 设置,预构建的模块化组件。

**4.类型安全的 LLM 交互:**基于 Rust 强类型系统来保障 LLM 交互的安全。

**5.无缝对接 Vector Store 集成:**内置对裁体存储的支持,实现高效的相似性 AI 应用程序的搜索和检索功能。

**6灵活的嵌入支持:**提供易于使用的 API,用于处理嵌入,这对语义至关重要 搜索和基于内容的推荐。

Rig 野心是以 Rust 驱动性的性能、利用 Rust 优势零成本抽象和内存安全、高性能、低延迟的 LLM 操作。当然要达到企业级商用化的标准框架,现在阶段只是 AI Agent 生态的爆发期,至于落地商业化,需要加速迈向市场去验证与反馈的。

如何快速上手 Rig

下面是官网几个 Demo 。

basic_llm.rs

use rig::providers::openai;
use rig::completion::Prompt;

#[tokio::main]
async fn main() -> Result<()> {
   
   
    let client = openai::Client::from_env();
    let gpt4 = client.agent("gpt-4")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值