机器学习100天(十四):014 梯度下降算法求解线性回归

本文详细介绍了如何使用梯度下降算法求解线性回归问题,从更新公式开始,逐步实现算法并应用到房价预测数据集上。通过Python代码展示梯度下降训练过程,可视化损失函数的降低和拟合效果,最终得出在测试集上的良好表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习100天,今天讲的是:使用梯度下降算法求解线性回归问题。

一、梯度下降更新公式

之前我们介绍了正规方程法直接求解线性回归问题,但是梯度下降算法在机器学习中更为常用,因为面对复杂问题时,梯度下降算法能够更加容易获得全局最优解。上一节我们已经介绍了梯度下降算法的理论解释,下面我们将编写梯度下降算法的程序,解决线性回归问题。

还是房价预测的问题,简单线性模型:

y ^ = w 0 + w 1 x \hat y=w_0+w_1x y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红色石头Will

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值