vue 使用fetch-event-source 处理sse,实现ChatGpt逐字输出效果

1. 安装

npm install @microsoft/fetch-event-source

2. 引用

import { fetchEventSource } from "@microsoft/fetch-event-source";

3. 使用

  fetchEventSource('/api/chat', { 
        method: 'POST',
        headers: {
          'Content-Type': 'application/json',
          'Accept': '*/*',
          'Token': this.token,
        },
        body: JSON.stringify({  message: 'xxxx' }),
        openWhenHidden: true,
        signal: this.controller.signal,
        onmessage: (msg) => {
          sendAnswer.loading = false
          let data = msg.data
          // 异常信息
          if(data === '[EXCEEDED_QUOTE_LIMIT]'){
            let errorTip = "xxx!"
            this.$message.warning(errorTip)
          }
          // 消息正常接受中
          else if(data != '[DONE]') {
            try{
              let dataJson = JSON.parse(data) || {}
              let timer = setTimeout(()=>{
                if(sendAnswer.isStop) {
                  clearTimeout(timer)
                  return
                }
                sendAnswer.text += content
                clearTimeout(timer)
              }, times*that.treamStepGap)
            }catch (error) {}
          }
          // 消息接收完毕
          else if(data === '[DONE]') {
          console.log('connection closed')
          }
          times++
        },
        onclose: () => {
          console.log('connection closed')
        },
        onerror: (err) => {
          console.log(err)
        },
        onopen: (response) => {
          sendAnswer.text = ''
          return Promise.resolve()
        }
      })

<think>嗯,用户现在问的是如何将深度求索(DeepSeek)和自己的知识库结合起来使用。之前他们问过Vue怎么接入智能对话,现在可能是在扩展他们的项目,需要结合特定的大模型和自己的数据。首先,我需要确认DeepSeek是否提供了相关的API或者文档支持知识库集成。可能用户已经知道如何调用基础API,但现在需要进一步的知识库整合。 用户可能的需求是,他们有自己的数据,比如产品信息、文档或者FAQ,想要让DeepSeek在回答时能够基于这些数据生成更准确的回复。这时候可能需要用到RAG(检索增强生成)技术,或者利用微调的方法让模型适应特定领域的数据。 接下来,我得考虑两种主要方法:检索增强生成(RAG)和模型微调。RAG适合实时检索外部知识库,而微调则是让模型学习特定领域的数据。用户可能没有太多训练资源,所以RAG可能更可行,尤其是如果他们希望知识库可以动态更新的话。 然后需要分步骤说明。首先准备知识库,可能需要处理成文本向量,存储在向量数据库中。然后,在用户提问时,先检索相关知识,再结合这些信息生成回答。这涉及到文本嵌入模型和向量数据库的选择,比如Hugging Face的模型或OpenAI的Embeddings,向量数据库如FAISS或Pinecone。 另外,用户可能需要一个后端服务来处理检索和调用DeepSeek的API,前端Vue展示,就像之前的问题那样。需要注意安全性,避免在前端暴露API密钥,所以建议通过后端代理。 用户可能还关心如何优化检索效果,比如分块策略、元数据过滤,以及如何处理知识库的更新。此外,成本也是一个问题,特别是如果知识库很大,生成嵌入向量可能会有开销,这时候分块和选择合适的模型很重要。 最后,要提醒用户注意事项,比如数据预处理的重要性、API调用的成本控制,以及回复的校验,确保生成的内容准确合理。可能还需要建议他们使用现有的开源框架,比如LangChain或LlamaIndex,来简化流程。</think>在 Vue 中接入 DeepSeek 并与其知识库结合使用,通常需要结合 **检索增强生成(RAG, Retrieval-Augmented Generation)** 技术。以下是详细实现流程: --- ### 一、整体架构 ```plaintext 用户输入 → Vue前端 → 后端服务 → 知识库检索 → DeepSeek API → 返回增强后的回答 ``` --- ### 二、具体步骤 #### 1. **准备知识库** - 将自有知识库文档转换为结构化数据: - 格式:TXT/PDF/Markdown → 分段文本 - 处理:文本清洗、分块(建议 256-512 tokens/块) - 生成向量嵌入(Embedding): - 使用模型:`text-embedding-3-small`、`bge-large-zh`(中文)或 DeepSeek 自带嵌入模型 - 存储到向量数据库:ChromaDB、FAISS、Pinecone 等 **示例代码(Python 处理知识库):** ```python from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings # 文本分块 splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=50) docs = splitter.split_documents(your_documents) # 生成嵌入 embedder = HuggingFaceEmbeddings(model_name="BAAI/bge-zh") vectors = embedder.embed_documents([doc.page_content for doc in docs]) # 存入向量数据库(以 ChromaDB 为例) import chromadb client = chromadb.PersistentClient(path="/path/to/db") collection = client.create_collection("knowledge_base") collection.add(embeddings=vectors, documents=[doc.page_content for doc in docs]) ``` --- #### 2. **前端集成(Vue)** 创建聊天组件,与后端 API 交互: ```vue <template> <div> <input v-model="input" @keyup.enter="sendQuery" /> <button @click="sendQuery">发送</button> <div v-html="response"></div> </div> </template> <script> export default { data() { return { input: '', response: '' }; }, methods: { async sendQuery() { try { const res = await fetch('https://your-api.com/ask', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ question: this.input }) }); const data = await res.json(); this.response = data.answer; } catch (error) { console.error('Error:', error); } } } }; </script> ``` --- #### 3. **后端服务(关键步骤)** 实现 RAG 流程: 1. 接收用户问题 2. 从向量数据库检索相关知识 3. 将检索结果 + 原始问题提交给 DeepSeek **Python 示例(FastAPI):** ```python from fastapi import FastAPI from pydantic import BaseModel import chromadb app = FastAPI() chroma_client = chromadb.PersistentClient(path="/path/to/db") collection = chroma_client.get_collection("knowledge_base") class Query(BaseModel): question: str @app.post("/ask") async def ask(query: Query): # 1. 检索知识库 question_embedding = embedder.embed_query(query.question) results = collection.query(query_embeddings=[question_embedding], n_results=3) # 2. 构建提示词 context = "\n".join(results['documents'][0]) prompt = f"""基于以下知识库内容回答问题: {context} 问题:{query.question} 答案:""" # 3. 调用 DeepSeek API deepseek_response = requests.post( "https://api.deepseek.com/v1/chat/completions", headers={"Authorization": "Bearer YOUR_API_KEY"}, json={ "model": "deepseek-chat", "messages": [{"role": "user", "content": prompt}] } ) return {"answer": deepseek_response.json()['choices'][0]['message']['content']} ``` --- ### 三、高级优化技巧 #### 1. **检索优化** - 混合搜索:结合向量检索 + 关键词匹配(BM25) - 元数据过滤:为文档块添加时间、来源等元数据 - 重排序:使用 `bge-reranker` 等模型优化检索结果排序 #### 2. **提示工程** ```python # 更好的提示词模板 prompt = f""" 你是一名专业助手,请严格根据以下信息回答问题。如果信息不足,请回答“我不清楚”。 参考信息: {context} 问题:{query.question} 请按照以下格式回答: 1. 核心要点(不超过50字) 2. 详细解释(分点列出) 3. 数据来源(如果有) """ ``` #### 3. **流式传输** 通过 SSE(Server-Sent Events)实现逐字输出: ```javascript // Vue 前端 const eventSource = new EventSource(`/ask-stream?question=${encodeURIComponent(input)}`); eventSource.onmessage = (e) => { this.response += JSON.parse(e.data).token; }; ``` --- ### 四、注意事项 1. **知识更新**:定期同步最新数据到向量库 2. **权限控制**:通过 JWT 验证用户访问权限 3. **成本控制**:监控 API 调用量和 token 消耗 4. **错误处理**:添加网络重试、限流机制 如果需要更具体的实现细节(如本地部署方案、私有化知识库处理),可以进一步说明需求!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值