一、核主成分
1.1 和PCA的区别
PCA (主成分分析)对应一个线性高斯模型(参考书的第二章),其基本假设是数据由一个符合正态分布的隐变量通过一个线性映射得到,因此可很好描述符合高斯分布的数据。然而在很多实际应用中数据的正态性不能保证,这时用PCA建模通常会产生较大偏差。这时可以设计一个合理的非线性映射,将原始数据映射到特征空间,使数据在该空间的映射具有高斯性,在这个基础可进行有效的PCA建模。即通过核函数间接映射到特征空间再间接进行建模,所以称为核主成分分析;
1.2 推导过程
定义原始数据空间样本为,非线性映射为
,且在原始空间和特征空间满足如下归一化条件。
1