
目标追踪
文章平均质量分 86
目标追踪是计算机视觉的重要分支,广泛应用于自动驾驶、视频监控、人机交互等领域。该专栏通过理论讲解、代码实现和项目实战,帮助学习者掌握从基础到进阶的目标追踪算法,并提升实际工程能力。适合人群:
计算机视觉初学者或进阶学习者。需要快速复现算法或完成项目的工程师。
reset2021
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
SiamFC 算法详解
SiamFC作为孪生网络跟踪器的开创性工作,通过简洁高效的设计实现了实时目标跟踪,为后续研究提供了重要基础。虽然存在一些局限性,但其核心思想仍被广泛应用,不断推动着视觉目标跟踪领域的发展。原创 2025-04-25 12:01:43 · 153 阅读 · 0 评论 -
SiamFC算法深度解析
SiamFC(Siamese Fully-Convolutional Networks)是一种基于孪生网络(Siamese Network)的视觉目标跟踪算法,由Bertinetto等人在2016年提出。适用于需要实时跟踪的场景,如无人机追踪、视频监控、自动驾驶等,尤其在对速度要求较高的场景中表现突出。,将响应图上的每个位置视为二分类样本(正样本为真实目标中心,负样本为背景区域)。:后续帧中可能包含目标的更大区域(通常为255×255像素)。输出为响应图(17×17),最大值对应目标在搜索区域中的位置。原创 2025-04-24 22:21:31 · 229 阅读 · 0 评论 -
CamShift目标追踪算法
CamShift(Continuously Adaptive Mean Shift)算法是Mean Shift算法的改进版本,主要用于视频序列中的目标跟踪。它通过动态调整搜索窗口的大小和方向,适应目标在运动过程中的尺度变化和旋转,广泛应用于计算机视觉领域,如人脸跟踪、物体追踪等。从上一帧的目标位置开始,在反向投影图上运行Mean Shift算法,寻找密度最大的区域(即新目标位置)。对后续每一帧,计算每个像素属于目标颜色分布的概率,生成反向投影图(概率密度图)。依赖颜色分布,若背景与目标颜色相似易失效。原创 2025-04-24 11:52:40 · 129 阅读 · 0 评论 -
Mean-Shift目标跟踪算法详解
其改进版(如CAMShift)可解决尺度问题,但复杂场景需结合其他特征或深度学习模型。结合卡尔曼滤波(Kalman Filter)预测目标位置,提升快速移动时的鲁棒性。对直方图进行归一化,得到概率分布 ququ(uu为直方图的bin索引)。通过Mean-Shift迭代,找到相似度最高的区域(密度峰值)。联合颜色、纹理(LBP)、或深度特征(如HOG)增强判别能力。统计目标区域内颜色的概率分布(即“目标模型”)。将目标的颜色分布(如HSV空间的H通道)表示为。:手势跟踪(如基于肤色的手部追踪)。原创 2025-04-23 16:55:44 · 78 阅读 · 0 评论 -
KCF目标追踪算法 (Kernelized Correlation Filters) 详解
该算法基于相关滤波(Correlation Filter)理论,结合核技巧(Kernel Trick)和循环矩阵(Circulant Matrix)性质,在计算效率与跟踪精度之间取得了良好的平衡。KCF算法因其高速度(可达数百FPS)和较高的鲁棒性,成为目标跟踪领域的重要基准方法之一。KCF算法的核心思想是通过训练一个滤波器,使其在目标位置处产生最强的响应,从而在后续帧中快速定位目标。:传统的相关滤波器是线性的,KCF通过核方法(如高斯核、多项式核)将其扩展到非线性情况,提高分类能力。原创 2025-04-23 14:15:21 · 513 阅读 · 0 评论 -
deepsort训练自己的数据集
要训练DeepSORT在自己的数据集上,需要完成以下关键步骤。原创 2025-04-21 16:51:52 · 1171 阅读 · 0 评论 -
ByteTrack自定义数据集训练指南
使用NVIDIA Jetson部署,启用--fp16和--trt以下是使用ByteTrack 通过保留低置信度检测框(传统方法会过滤掉),利用运动关联(IoU匹配)和外观特征(可选)实现高精度多目标跟踪,尤其适合遮挡和拥挤场景。原创 2025-04-21 13:51:08 · 721 阅读 · 0 评论 -
FairMOT与MCFairMOT算法对比
扩展 FairMOT 的单类别检测头,支持同时预测不同类别的中心点和边界框。可选方案:为不同类别设计独立的Re-ID子网络,减少跨类别特征混淆。需同时跟踪多类别目标(如交通监控中的车、人、非机动车)。有足够算力支持多类别计算(如服务器或高性能GPU)。:减少无关类别的干扰(如车辆轨迹不会匹配到行人)。:需平衡不同类别的样本分布(避免类别不平衡)。,可进一步优化多类别场景下的抗遮挡能力。,并调整损失函数(如类别加权交叉熵)。仅需跟踪单类别目标(如行人或车辆)。可接受稍低的帧率以换取多类别支持。原创 2025-04-18 16:42:32 · 820 阅读 · 0 评论 -
CenterTrack
的多目标跟踪(MOT)算法,由 Xingyi Zhou 等人提出(ECCV 2020)。显式学习目标的运动模式(而非依赖 Kalman 滤波),更适合非线性运动(如行人突然转向)。,从而实现高效的单阶段(One-Stage)跟踪,适用于实时应用(如自动驾驶、视频监控)。否则初始化为新目标。对短暂丢失的目标(如遮挡),保留历史轨迹一段时间(类似 SORT 的机制)。:预测目标从 t−1t−1 帧到 tt 帧的位移(Δx,ΔyΔx,Δy)。上一帧的检测热图 Ht−1Ht−1(可选,用于增强时序信息)原创 2025-04-18 16:39:30 · 970 阅读 · 0 评论 -
BoT-SORT算法
显著提升了复杂场景下的跟踪稳定性,是 SORT 系列算法的先进版本。:传统 Kalman 滤波假设目标运动是线性的,但在实际场景中,相机可能移动(如车载摄像头、无人机拍摄),导致目标运动非线性。:DeepSORT 使用外观特征(Re-ID)辅助匹配,但在遮挡或低分辨率情况下可能失效。,在SORT、DeepSORT和OC-SORT的基础上进一步提升了跟踪鲁棒性,尤其是在。:传统 SORT 使用固定的过程噪声和观测噪声,无法适应不同运动速度的目标。:对未匹配的检测和轨迹,使用 Re-ID 特征计算相似度。原创 2025-04-18 16:37:18 · 895 阅读 · 0 评论 -
OC-SORT算法
OC-SORT(Observation-Centric SORT)是一种基于观测中心的多目标跟踪(MOT, Multi-Object Tracking)算法,是对经典SORT(Simple Online and Realtime Tracking)算法的改进。传统SORT以预测为中心(如Kalman滤波的预测优先),而OC-SORT更注重当前帧的观测结果,减少对不可靠预测的依赖。在数据关联时,不仅考虑位置和IOU(交并比),还加入运动方向的一致性判断(如速度向量夹角),减少相似外观目标的误匹配。原创 2025-04-18 16:19:50 · 677 阅读 · 0 评论 -
FairMOT算法详解
同时完成目标检测和重识别(Re-ID)特征提取,解决了传统两阶段方法(如DeepSORT)中检测与Re-ID任务的不公平性问题,显著提升了跟踪的准确性和效率。,即让检测(Detection)和重识别(Re-ID)两个任务在同一个网络架构中。检测器和Re-ID模型分开训练,检测框的质量直接影响Re-ID特征提取。检测误差会传递到Re-ID阶段,导致ID切换(ID Switch)增加。输出热图(Heatmap),预测目标中心点(类似CenterNet)。:引入全局Re-ID检索(如BoT-SORT)。原创 2025-04-18 16:14:27 · 1619 阅读 · 0 评论 -
ByteTrack目标追踪算法详解
ByteTrack通过。原创 2025-04-02 14:41:57 · 1420 阅读 · 0 评论 -
基于深度学习的目标追踪技术全解析
模拟遮挡训练鲁棒表示(Occlusion-Aware R-CNN)。:引入区域建议网络(RPN),联合分类与回归提升定位精度。:FP16/INT8量化与层融合(NVIDIA GPU)。:逐帧检测目标,通过数据关联(匈牙利算法)跨帧链接轨迹。:融合YOLO检测与Re-ID特征,卡尔曼滤波预测轨迹。:卷积与Transformer结合,平衡局部与全局信息。:FAIR的检测与追踪平台(集成Mask R-CNN)。:CLIP模型实现未知类别追踪(如OVTrack)。:联合训练检测与Re-ID,解决特征不一致问题。原创 2025-03-19 14:31:40 · 1032 阅读 · 0 评论 -
DeepSORT 目标追踪算法详解
DeepSORT 凭借其高效的实时性和稳定的追踪效果,已成为多目标追踪领域的基准算法。通过合理选择检测器、优化Re-ID模型及调整参数,可显著提升其在复杂场景下的性能。领域的经典算法,通过结合目标检测、运动预测和外观特征匹配,实现了高效、稳定的实时追踪。MOTA=1−漏检数+误检数+ID切换数总目标数MOTA=1−总目标数漏检数+误检数+ID切换数。:将大模型(如ResNet50)蒸馏至轻量模型(如MobileNetV2)。:提取目标的深度特征(128维或256维向量),用于区分不同目标。原创 2025-03-19 14:48:01 · 1468 阅读 · 0 评论 -
目标追踪综述
目标追踪的核心任务可定义为:给定视频序列初始帧中目标的标注信息(通常为边界框或掩码),在后续每一帧中预测目标的时空状态(位置、尺度、运动轨迹等)。其核心挑战在于如何建模目标的外观与运动特征,并应对复杂环境干扰(如遮挡、光照变化、背景杂波等)。原创 2025-03-06 16:15:52 · 778 阅读 · 0 评论