岭回归和Lasso回归&正则化,梯度下降。

这篇博客介绍了梯度下降的重要性,包括批量和随机梯度下降,并探讨了正则化在防止过拟合中的作用。重点讲解了L1和L2正则化的差异,以及它们在Lasso回归和岭回归中的应用。同时,通过波士顿房价预测案例展示了实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

aaaaaa怎么那么多东西要看啊我要谢了

呃呃呃呃这篇都是单纯掉包的呢,根据原理跑的代码在另一篇吧

目录

前言

查看调用api:sklearn官方文档

np.random.

梯度下降

1 以梯度下降为例,为什么要预处理?

2 原理

2.1 批量梯度下降​编辑

2.2 随机梯度下降

3 代码

正则化

1 如何解决过拟合的问题?--正则化

2 为什么L1更稀疏?

3 L1正则化项

4 L2正则化项

Lasso回归和岭回归

1 关于正则化项:

2 岭回归:L2正则化

3 Lasso回归:L1正则化

案例:对波士顿房价进行预测


前言

查看调用api:sklearn官方文档

# 搜索api文档:ctrl+F搜索关键词 API Reference — scikit-learn 1.1.1 documentation


np.random.

  • rand(x,y) 生成【x行y列】的(0,1)区间的随机数
  • randn(x,y) 生成【x行y列】(0,1)区间正态分布的随机数
  • randint 生成整数
import numpy as np
X=2*np.random.rand(100,1)
y=4+3*X+np.random.randn(100,1)

梯度下降

1 以梯度下降为例,为什么要预处理?

### 问题:
1.步长太小,时间多
2.步长太大,更糟糕
3.局步最优和全局最优点
(影响:随机参数初始化位置,多调学习率)
4.如果是凸函数就没问题,只有全局最优
5.取值不同也会影响
所以要标准化和归一化!!

学习率不同的影响,代码见另一篇哈哈

2 原理

2.1 批量梯度下降

2.2 随机梯度下降

就是随机选一个样本来算那个偏导数,然后随机下降

!可以随着迭代次数增多步长减小啊


3 代码

直接调api简单的代码:根据原理跑的代码在另一个博客

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge
from sklearn.metrics import mean_squared_error

#梯度下降进行预测
def linear2():
    #数据获取和分割
    boston=load_boston()
    x_trian,x_test,y_train,y_test=train_test_split(boston.data,boston.target,random_state=22)
    #数据预处理
    transfer=StandardScaler()
    x_train=transfer.fit_transform(x_trian)
    x_test=transfer.transform(x_test)
    #预估器
    estimator=SGDRegressor()
    estimator.fit(x_train,y_train)
    #得出模型
    print('coef:',estimator.coef_)
    print('bias:',estimator.intercept_)
    #模型评估
    y_predict=estimator.predict(x_test)
    print
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值