aaaaaa怎么那么多东西要看啊我要谢了
呃呃呃呃这篇都是单纯掉包的呢,根据原理跑的代码在另一篇吧
目录
前言
查看调用api:sklearn官方文档
# 搜索api文档:ctrl+F搜索关键词 API Reference — scikit-learn 1.1.1 documentation
np.random.
- rand(x,y) 生成【x行y列】的(0,1)区间的随机数
- randn(x,y) 生成【x行y列】(0,1)区间正态分布的随机数
- randint 生成整数
import numpy as np
X=2*np.random.rand(100,1)
y=4+3*X+np.random.randn(100,1)
梯度下降
1 以梯度下降为例,为什么要预处理?
### 问题:
1.步长太小,时间多
2.步长太大,更糟糕
3.局步最优和全局最优点
(影响:随机参数初始化位置,多调学习率)
4.如果是凸函数就没问题,只有全局最优
5.取值不同也会影响
所以要标准化和归一化!!
学习率不同的影响,代码见另一篇哈哈
2 原理
2.1 批量梯度下降
2.2 随机梯度下降
就是随机选一个样本来算那个偏导数,然后随机下降
!可以随着迭代次数增多步长减小啊
3 代码
直接调api简单的代码:根据原理跑的代码在另一个博客
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge
from sklearn.metrics import mean_squared_error
#梯度下降进行预测
def linear2():
#数据获取和分割
boston=load_boston()
x_trian,x_test,y_train,y_test=train_test_split(boston.data,boston.target,random_state=22)
#数据预处理
transfer=StandardScaler()
x_train=transfer.fit_transform(x_trian)
x_test=transfer.transform(x_test)
#预估器
estimator=SGDRegressor()
estimator.fit(x_train,y_train)
#得出模型
print('coef:',estimator.coef_)
print('bias:',estimator.intercept_)
#模型评估
y_predict=estimator.predict(x_test)
print