pandas apply加速

本文探讨了在处理数据时,使用Python中的map函数相较于apply函数的优势。通过具体示例,展示了map函数在处理DataFrame中两列数据时的显著速度优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用map速度比apply快
def func(S1, S2):
    #do something
    return 

#data['similarity'] =pd.Series()
data['similarity'] = list(map(func,data['col1'], data['col2']))
#data['similarity'] = data.apply(lambda row: func(row['col1'], row['col2']), axis=1)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值