霍夫丁不等式 Hoeffding inequality

本文介绍了霍夫丁不等式的概念及其数学表达形式,该不等式用于描述一组独立且有界随机变量偏离其均值的概率上限,并对比了与切比雪夫不等式的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

霍夫丁不等式是描述:一组相互独立并且有界的变量偏离其均值的和大于一定值的概率具有一个上界。

该不等式最初是研究二项分布的性质。

假设有一组相互独立的随机变量 X1,X2,…,XnX_1, X_2, \dots, X_nX1,X2,,Xn,每个随机变量的波动区间为 [ai,bi][a_i, b_i][ai,bi]i=1,2,…,ni=1, 2,\dots,ni=1,2,,n。令 X‾=1n(X1+X2+⋯+Xn)\overline{X}=\frac{1}{n}(X_1+X_2+\dots+X_n)X=n1(X1+X2++Xn),则对于 t>0t>0t>0,有以下不等式:

Pr⁡{∑i=1n(Xi−E(Xi))≥tN}≤exp⁡{−2n2t2∑i=1n(bi−ai)2} \Pr\left\{\sum_{i=1}^n(X_i-\mathbb{E}(X_i))\geq tN\right\}\leq \exp\left\{-\frac{2n^2t^2}{\sum_{i=1}^n(b_i-a_i)^2}\right\} Pr{i=1n(XiE(Xi))tN}exp{i=1n(biai)22n2t2}

该不等式似乎与著名的切比雪夫不等式有点相似:

Pr⁡{∣X−μ∣≥ϵ}≤σ2ϵ2 \Pr\{|X-\mu|\geq\epsilon\}\leq \frac{\sigma^2}{\epsilon^2} Pr{Xμϵ}ϵ2σ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值