对Whisper模型的静音攻击

       针对Whisper模型的静音攻击方法主要针对基于Transformer的自动语音识别系统,特别是Whisper系列模型。其有效性主要基于Whisper模型使用了一些“特殊标记”来指导语言生成过程,如标记表示转录结束。我们可以通过在目标语音信号前添加一个通用短音频段,模拟标记的声学实现,从而成功“静音”Whisper模型。

1、针对Whisper模型的静音攻击步骤

  • 确定攻击目标:攻击的目标是使Whisper模型在解码时忽略语音内容,只转录特殊标记,从而生成空白的转录结果。
  • 构建损失函数:定义损失函数来最大化模型生成标记的概率,即最大化P(y1=|x, y0)。
  • 生成对抗样本:利用梯度下降法来优化这个损失函数,学习一个长度为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值