对语言模型的通用声学攻击主要涉及到通过生成对抗性扰动来干扰或欺骗语音识别系统。这种攻击可以通过多种方式实现,包括但不限于基于深度学习的方法和特定的攻击策略。
通用音频对抗性扰动生成器(UAPG)是一种有效的工具,它能够在任意良性音频输入上强加对抗性扰动,从而导致错误分类。这种方法的优势在于其高效性,实验表明它比最先进的音频对抗攻击方法实现了高达167倍的加速。
此外,对于语音识别系统,攻击者可以利用已知的攻击方法,如Wav-to-API(WTA)攻击和Wav-air-API(WAA)攻击,这些攻击通过网络或无线方式进行。这些攻击通常针对语音识别系统中的声学模型和语言模型,试图通过修改输入数据来误导系统的输出。
1、通用音频对抗性扰动生成器(UAPG)的具体工作原理和实现方式
1.1 基于IG的声纹通用对抗扰动生成方法
该方法通过贪婪迭代方法来解决声学普遍对抗性扰动的优化问题,并设计新的目标函数,以确保攻击在最小化对抗性扰动的可感知性和提高成功攻击的准确性方面具有更高的准确性。研究结果表明,即使音频训练数据样本量最小(即每个类别一个),IG-UAP方法产生的声学通用性对抗性扰动也能获得有效的攻击结果。此外,人耳很难察觉原始数据信息的丢失和对抗性扰动的增加(对于目标攻击的情况,小样本数据集的ASR值范围为82.4%到90.2%)。
关键步骤如下:
- 计算梯度:对于给定的声纹识别模型,需要计算其对于输入声纹特征的梯度。梯度表示了模型输出对于输入特征的变化率