- 博客(11)
- 收藏
- 关注
原创 Neo4入门
这里写目录标题[1 Cypher语法入门](http://blog.chinaunix.net/site/search.html)Neo4j入门点滴(一):CypherNeo4j入门点滴(补):删除重复节点Neo4j入门点滴(二):模式与模式匹配Neo4j入门点滴(三):用Cypher完善图Neo4j入门点滴(四):Cypher查询优化[Neo4j入门点滴(五):Windows Shell for Cypher](http://blog.chinaunix.net/uid-22414998-id-57656
2021-03-22 11:05:20
188
原创 深度置信网 DBNs
https://blog.csdn.net/jiguquan3839/article/details/82993896
2021-03-12 10:39:16
152
原创 【NLP学习-2】逻辑回归
【NLP学习-2】逻辑回归1 什么是逻辑回归2 Sigmoid函数3 损失函数4 优点5 应用6 逻辑回归常用的优化方法一阶方法二阶方法:牛顿法、拟牛顿法6 逻辑斯特回归为什么要对特征进行离散化 学习笔记:来源https://github.com/NLP-LOVE/ML-NLP/blob/master/Machine%20Learning/2.Logistics%20Regression/2.Logistics%20Regression.md 1 什么是逻辑回归 用于二分类问题。大家都熟悉线性回归,一般形式
2021-03-08 23:34:27
393
原创 【NLP学习-1】正则化
【NLP学习】正则化1 正则化2 L2正则项(岭回归)什么情况下用L2正则项什么情况下不用L2正则项3 L1正则项4 ElasticNet回归:(L1、L2正则项)什么情况下用ElasticNet回归 学习笔记:来自https://github.com/NLP-LOVE/ML-NLP/blob/master/Machine%20Learning/Liner%20Regression/1.Liner%20Regression.md 1 正则化 欠拟合、过拟合怎么解决? 解决方式:正则化 2 L2正则项(岭回归
2021-03-08 22:58:53
266
原创 pip 问题汇总
镜像: (1)阿里云 http://mirrors.aliyun.com/pypi/simple/ (2)豆瓣http://pypi.douban.com/simple/ (3)清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/ (4)中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/ (5)华中科技大学http://pypi.hustunique.com/ pip更新 Requirement already up-to
2021-02-23 16:53:07
216
原创 NLP基础知识学习笔记
1 如何衡量机器学习分类模型 来源:https://github.com/duoergun0729/nlp 混淆矩阵 准确率与召回率 准确度与F1-Score ROC与AUC ROC(Receiver Operating Characteristic Curve)受试者工作特征曲线,以真阳性率为纵坐标,假阳性率为横坐标绘制的曲线,是反映灵敏性和特效性连续变量的综合指标。一般认为ROC越光滑说明分类算法过拟合的概率越低,越接近左上角说明分类性能越好。 AUC(Area Under the Receiver
2021-01-29 17:55:32
698
原创 知识图谱的入门学习笔记
知识图谱的入门学习笔记1.知识图谱与知识表示学习1.1 知识图谱1.2 知识表示学习2 知识表示学习的典型模型及训练2.1 TransE模型2.2 TransR模型2.3 RESCAL模型2.4 DisMult模型2.5 优化策略‘3 DGL-KE大规模知识表示学习框架3.1 DGL-KE简介及特性 视频地址:https://www.bilibili.com/video/BV1dy4y1m7C4?t=5437 学习笔记: 1.知识图谱与知识表示学习 1.1 知识图谱 (头实体,关系,尾实体)三元组为基本结构
2021-01-29 12:14:20
2669
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人