自动识别和绕过网站滑动验证码的方法

准备工作
在开始之前,确保已安装以下Python库:

Selenium:用于模拟浏览器操作。
OpenCV:用于图像处理和识别滑块位置。
实现步骤
打开网站页面: 使用Selenium库打开目标网站的登录页面。
截取验证码图片: 利用Selenium截取包含滑动验证码的屏幕截图。
图像处理: 使用OpenCV库对截取到的验证码图片进行预处理,包括灰度化、二值化、降噪等操作,以便后续识别。
识别滑块位置: 在预处理后的图片中,通过图像处理算法识别滑块的位置。
生成滑块拖动路径: 根据滑块位置和缺口位置,计算出滑块需要拖动的路径。
模拟拖动滑块: 使用Selenium模拟用户操作,按照生成的路径拖动滑块完成验证过程。
完整代码示例
python

import cv2
from selenium import webdriver
import time

# 初始化浏览器
driver = webdriver.Chrome()

# 打开网站页面
driver.get("https://example.com/login")

# 截取验证码图片
driver.save_screenshot("captcha.png")

# 读取验证码图片并进行预处理
image = cv2.imread("captcha.png", 0)
_, binary = cv2.threshold(image, 200, 255, cv2.THRESH_BINARY)
binary = cv2.bitwise_not(binary)

# 在预处理后的图片中识别滑块位置
# TODO: 使用图像处理算法识别滑块位置

# 生成滑块拖动路径
# TODO: 根据滑块位置和缺口位置生成拖动路径

# 模拟拖动滑块
# TODO: 使用Selenium模拟拖动滑块完成验证过程

# 等待一段时间,观察验证结果
time.sleep(10)

# 关闭浏览器
driver.quit()

更多内容联系1436423940

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值