大模型:软件领域的新引擎与新挑战

在当今数字化浪潮中,以大模型为代表的新一代人工智能技术正成为软件领域智能化转型的核心驱动力。2024 年《政府工作报告》首次提出 “人工智能 +” 战略行动,旨在推动人工智能赋能千行百业,大模型无疑是这一战略推进中的关键角色,它为传统软件注入新智力,为软件及其形态带来新能力与新变革。​

大模型:技术架构与核心技术​

大模型,即大规模机器学习模型,通常指参数规模巨大(数十亿至数千亿参数)、结构复杂的深度神经网络模型。其核心特征在于参数规模庞大和计算结构复杂,这使得大模型能够处理和学习海量数据中的复杂模式与关系。大模型通常基于深度学习技术构建,尤其是以 Transformer 架构为代表的神经网络技术,为模型赋予了强大的学习和表达能力。Transformer 架构基于自注意力机制,能够高效捕捉长距离依赖,成为大模型的基础架构。预训练 + 微调范式也是大模型的关键技术之一,模型先在大规模无标注数据上预训练,掌握通用规律,再针对具体任务微调,极大提升了模型泛化能力。此外,强化学习与人类反馈(RLHF)通过人类反馈优化模型输出质量,提升对话和生成的自然度与准确性;多模态融合结合文本、图像、语音等多种数据类型,扩展了模型应用边界;蒸馏与模型压缩技术则提升了推理效率,降低部署成本。​

大模型分类方式多样。按应用领域,可分为大语言模型、视觉大模型和多模态大模型。大语言模型专注自然语言处理,如 OpenAI 的 GPT 系列和百度的文心一言,能完成文本生成、翻译、问答等多种任务;视觉大模型应用于计算机视觉领域,可进行图像分类、目标检测等;多模态大模型融合多种数据模态,打破单模态局限。按技术架构,有基于 Transformer 架构、生成对抗网络(GAN)和混合架构的大模型。按功能特性,可分为通用基础模型和领域专用模型,前者通用性强,后者针对特定领域优化。​

大模型在软件领域的落地案例​

提升生产效率,降低项目风险​

大模型在软件开发过程中,通过智能开发和智能测试等工具展现出显著优势。软件开发人员利用大模型的代码生成、代码补全和问答等能力,能够更迅速地编写高质量代码。例如,一些开发人员在使用相关大模型工具后,显著减少了手动调试和错误修复时间。并且,这类工具降低了项目对开发人员个体的依赖。新开发人员借助工具的学习和记忆能力,能快速开发出符合项目需求和规范的代码,同时帮助开发人员快速学习新编程语言。CSDN 2024 年调查数据显示,AI 技术已成为我国软件开发者工作中不可或缺的一部分,有 69%的开发者表示正在使用 AI 工具,38%的开发者认为 AI 编码辅助工具可以减少 20%至 40%的工作量。​

改善软件质量,提高产品稳定性​

在改善软件质量方面,大模型通过智能化代码检查和智能单元测试等功能发挥重要作用。开发人员能够借助这些能力快速进行代码验证和测试,及时发现并解决如代码缺陷、代码异常、代码安全风险等潜在问题。以 GitHub 调研数据为例,Copilot 可帮助开发人员在编码过程中修复超过三分之二的漏洞。大模型还能通过测试用例及测试数据的生成与补全提升系统测试覆盖度,从而提升测试质量以减少软件缺陷,助力开发人员编写出更高质量的代码,降低软件发布后的故障率,提升软件的稳定性和性能。​

加速软件创新迭代,增强企业竞争力​

大模型推动企业软件创新迭代。一方面,智能化研发流程缩短了软件生产周期,企业能够更灵活地适应市场变化,加快产品迭代速率。例如,一些软件企业借助大模型技术,将原本需要数月的开发周期缩短至数周。另一方面,智能研发工具使开发人员从重复性的低端编码工作中解放出来,拥有更多时间投入创新相关工作,提升了企业创新能力,进而在激烈的市场竞争中抢占先机。

大模型在各领域案例

金融领域:智能风控与客户服务升级​

在金融行业,大模型为智能风控和客户服务带来了革新。以蚂蚁金服为例,其利用大模型构建的风控系统,通过对海量交易数据、用户行为数据以及市场信息的深度分析,能够精准识别潜在的欺诈风险和异常交易行为。相较于传统风控模型,基于大模型的风控体系识别准确率大幅提升,有效降低了金融风险损失。在客户服务方面,招商银行引入大模型打造智能客服,不仅能快速准确解答客户常见问题,还能根据客户咨询内容进行意图分析,主动为客户推荐合适的金融产品与服务,显著提高了客户满意度与服务效率,减少了人工客服成本 。​

医疗领域:辅助诊断与医疗影像分析​

医疗领域也深受大模型技术影响。谷歌旗下的 DeepMind 公司开发的大模型,在医疗辅助诊断上成果显著。它能够对各类医学影像,如 X 光、CT、MRI 等进行快速分析,识别出可能存在的病变区域,为医生提供辅助诊断建议,帮助医生更准确、高效地判断病情。在中国,一些医疗机构利用大模型对电子病历进行处理,通过学习大量病历数据,模型可以预测疾病发展趋势、评估治疗方案效果,为临床决策提供数据支持,提升医疗质量,改善患者治疗效果 。​

制造业:生产优化与质量检测​

制造业中,大模型助力企业实现生产流程优化与质量检测升级。例如,富士康运用大模型对生产线上的设备运行数据、工艺参数数据等进行实时监测与分析,提前预测设备故障,及时安排维护,减少因设备停机造成的生产损失,提高生产线的整体运行效率。在质量检测环节,宝马汽车利用大模型对汽车零部件外观和内部结构进行智能检测,通过学习大量合格与不合格产品样本,模型能够精准识别产品缺陷,大大提高了检测准确率和效率,确保产品质量符合高标准 。​

教育领域:个性化学习与智能辅导​

教育行业借助大模型实现了个性化学习与智能辅导。科大讯飞的教育大模型能够根据学生的学习情况、知识掌握程度、学习习惯等多维度数据,为每个学生量身定制个性化学习方案,推荐合适的学习内容与练习题目,帮助学生更有针对性地学习,提升学习效果。松鼠 Ai 的智适应教育大模型,在智能辅导场景中表现出色,它能模拟优秀教师的教学思维,实时解答学生疑问,针对学生的薄弱环节进行强化辅导,就像为每个学生配备了专属的私人教师,促进教育公平,提升整体教育质量 。​

大模型对软件安全的影响​

漏洞检测能力提升​

随着网络攻击手段愈发复杂多样,保障软件系统安全性成为关键挑战。在软件安全检测领域,结合大模型的静态应用程序安全测试(SAST)工具借助自然语言处理技术,能深入剖析代码逻辑。在处理复杂数据结构或动态生成的代码时,传统工具易遗漏潜在漏洞,而大模型通过学习代码上下文,能更精准识别安全问题。大模型可对函数调用、控制流等信息深度学习,智能识别潜在逻辑错误和安全隐患,分析方式更智能化,覆盖场景更复杂,提升了分析全面性和准确性。​

开源组件风险识别优化​

软件组成分析(SCA)聚焦于识别开源组件和第三方库中的安全风险。由于开源软件广泛应用,不安全的开源组件成为众多漏洞根源。传统 SCA 工具在及时更新漏洞数据库以及准确识别风险方面存在挑战。基于大模型的 SCA 工具通过深度学习,实现对第三方库安全的自动化扫描与分析。它能结合现有漏洞数据库和实时数据,对开源组件深入学习,自动识别已知漏洞并精准评估潜在风险,还可依据代码上下文信息,推测潜在安全风险,如不安全的 API 调用或不当配置使用等,同时借助 AIGC 技术,自动生成开源组件的许可证合规建议,降低法律风险。​

测试用例生成智能化​

在模糊测试(Fuzzing)中,大模型也发挥着积极作用。通过学习现有的漏洞样本和有效输入路径,大模型能够自动生成更具针对性的测试用例。在网络服务测试中,可生成特定格式请求,高度模拟真实攻击场景,精准发现潜在漏洞,提升测试有效性。大模型驱动的智能化输入生成方式大幅提升了测试速度、全面性和准确性,帮助开发者在更短时间内发现更多潜在问题,缩短软件开发周期,提高软件质量。​

大模型在软件领域的发展趋势​

推动软件能力智能化升级​

大模型将从多模态输入输出、智能识别、数据处理、决策实施等维度,全面提高软件的智能化程度。多模态能力增强,使软件支持文本、图像、语音等多种模态信息处理,并建立不同模态数据关联,为用户提供更全面灵活的交互体验。理解与生成能力提升,让软件突破传统规则式及专家式处理方式,更广泛理解输入信息,在跨领域场景实现知识理解和应用,显著提升复杂信息处理和生成能力。决策能力增强,软件可自主学习、规划和调用相关工具,并基于执行结果及用户行为和反馈实时调整,强化决策实施能力。​

引领软件技术变革​

从软件实现层面,大模型将以多种方式与传统软件深入融合,如嵌入式方式、知识库及 RAG 方式、单智能体或多智能体方式等,提升软件在理解、生成、决策等维度的能力。从软件设计层面,基于大模型能力,更多软件将朝着 AI 原生方向发展。传统软件以流程或数据为牵引,未来 AI 原生软件将以事件为驱动,为软件应用带来全新用户体验,使软件功能更便捷、高效、灵活。大模型将成为智能软件的技术底座,未来大模型服务(MaaS 服务)提供方将为更多企业供给更多、更快、更灵活、更稳定、更高质量的模型服务,拉动软件智能化的规模效应。​

促进软件与行业场景深度融合​

大模型提升了软件的定制化能力,尤其是各行业大模型在行业专有数据集上训练学习后,赋能的软件能更有效地理解场景需求,更高效运用行业知识,更灵活处理场景问题,并催生更多应用场景。在制造行业,相较于传统自动化软件仅能执行预设程序,应用大模型后的软件可实时分析业务需求并动态调整生产流程,显著提高生产效率和产品质量,推动制造业智能化升级。​

为工业软件发展注入新动力​

国产工业软件在面临技术封锁背景下挑战重重,尤其在研发设计类软件(如 CAD、EDA、CAE 等)领域,国产化率较低,竞争力较弱。大模型技术发展为国产工业软件自主创新和竞争力提升带来新可能,既能加速关键领域技术突破,又能助力工业软件技术能力提升和智能化升级。​

大模型在软件领域已展现出强大影响力,在提升软件生产效率、质量和创新能力的同时,也为软件安全检测带来新方法。未来,随着技术不断发展,大模型将持续推动软件领域的深刻变革,尽管也面临数据隐私、算法偏见等挑战,但只要合理应对,必将为软件行业创造更大价值。​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值