python最小二乘估计模型OLS Regression Results含义解释

本文介绍了对数似然性在统计建模中的应用,以及AIC和BIC作为模型选择的信息准则。同时讲述了如何通过Jarque-Bera和Durbin-Watson检验检查残差的正态性和自相关性。条件数在评估线性回归中的数值稳定性方面也起到了关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Log-Likelihood

对数似然性(Log-Likelihood)是在统计学中用于评估给定模型参数下观测数据的概率的一种方法。对数似然性的目标是最大化在给定数据条件下模型参数的可能性。

在一个概率模型中,给定观测数据,对数似然性(通常表示为LL或log-likelihood)可以通过以下步骤计算:

  1. 定义概率分布:确定数据的概率分布,这通常由模型的选择决定。

  2. 写出似然函数:似然函数表示在给定模型参数的情况下,观测到数据的概率。

在这里插入图片描述

其中,(n) 是观测数据的数量。

在Python中,对数似然性常常与最大似然估计(Maximum Likelihood Estimation,MLE)一起使用。在statsmodels等统计模型库中,模型拟合的结果通常包含对数似然性。

例如,在statsmodels中,可以通过以下方式获取对数似然性:

import statsmodels.api as sm

# 假设已经有了模型对象 model
log_likelihood = model.llf
print(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rubyw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值