拉格朗日插值

本文介绍如何通过拉格朗日插值法确定多项式,包括O(n²)复杂度下的简单插值方法和在特定条件下实现O(nlog²n)复杂度的优化插值算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拉格朗日插值

nnn个点(xi,yi)(x_i,y_i)(xi,yi),要唯一确定一个n−1n-1n1次多项式f(x)f(x)f(x),使得∀i,f(xi)=yi\forall i,f(x_i)=y_ii,f(xi)=yi

有简单的结论:
f(x)=∑i=1nyi∏j≠ix−xjxi−xj f(x)=\sum_{i=1}^{n}y_i\prod_{j \not = i}\frac{x-x_j}{x_i-x_j} f(x)=i=1nyij=ixixjxxj

任意条件O(n2)O(n^2)O(n2)插值

从这个式子可以简单的得到一个O(n2)O(n^2)O(n2)插值的做法。

h(x)=∏i=1n(x−xi)h(x)=\prod_{i=1}^{n}(x-x_i)h(x)=i=1n(xxi)f(x)f(x)f(x)可以简写为∑i=1nyi∏j≠i(xi−xj)h(x)x−xi\sum_{i=1}^{n}\frac{y_i}{\prod_{j \not = i}(x_i-x_j)}\frac{h(x)}{x-x_i}i=1nj=i(xixj)yixxih(x),其中前面的分式可以暴力O(n2)O(n^2)O(n2)的算,h(x)h(x)h(x)也可以暴力O(n2)O(n^2)O(n2)卷,后面的h(x)x−xi\frac{h(x)}{x-x_i}xxih(x)每次可以O(n)O(n)O(n)递推算出来,故总时间复杂度O(n2)O(n^2)O(n2)

一定条件下O(nlog⁡2n)O(n\log^2 n)O(nlog2n)插值

观察一下上面f(x)f(x)f(x)的简写形式,发现可以分治NTT做到O(nlog⁡2n)O(n \log^2 n)O(nlog2n),但是难点在怎么快速的计算∏j≠i(xi−xj)\prod_{j \not = i}(x_i-x_j)j=i(xixj)

gi(x)=h(x)x−xig_i(x)=\frac{h(x)}{x-x_i}gi(x)=xxih(x),发现就是要求gi(xi)g_i(x_i)gi(xi),把xix_ixi带入并用洛必达法则可以得到:
lim⁡x→xih(x)x−xi=lim⁡x→xih′(x)=h′(xi) \lim_{x \rightarrow x_i} \frac{h(x)}{x-x_i}=\lim_{x\rightarrow x_i}h'(x)=h'(x_i) xxilimxxih(x)=xxilimh(x)=h(xi)
所以就是要求h′(x)h'(x)h(x)nnn个点值,直接O(nlog⁡2n)O(n\log^2n)O(nlog2n)多点求值即可。

但是这个做法只有在模数比较好的情况下才能实现。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值