Cuda | Cudnn安装及其配置

  👉引言💎

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。
热爱写作,愿意让自己成为更好的人…


在这里插入图片描述

铭记于心
🎉✨🎉我唯一知道的,便是我一无所知🎉✨🎉

一、Cuda安装

1 选择Cuda版本
  • 首先查看 电脑的显卡驱动版本,然后根据显卡驱动去选择相应的的cuda版本号

    有两种方式去查看电脑的显卡版本

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

如果缺失驱动程序,那么可以再在https://www.nvidia.com/Download/index.aspx?lang=en-us下载相应的驱动程序

2下载及运行安装程序

在这里插入图片描述

在这里插入图片描述

  • 然后运行install.exe,会出现一个 填写位置的信息,那个是安装临时文件的储存位置,直接系统默认的c盘就可以,安装完会自动清理的

  • 随后 进入安装页面后选择自定义,这里可以 自己选择文件安装位置,这个才是Cuda visual studio的安装位置

在这里插入图片描述

3 测试

在这里插入图片描述

二、Cudnn安装

  • 什么是Cudnn?

    是基于Cuda的一个深度神经网络库,它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow、加州大学伯克利分校的流行caffe软件。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在GPU上实现高性能现代并行计算。

CUDA看作是一个工作台,而基于CUDA的深度学习GPU加速库 cuDNN相当于工作的工具,有了它,才能在工作台上进行工作(深度学习的计算训练等)想要在CUDA上运行深度神经网络,就要安装cuDNN,工作速度相较CPU快很多,那么如何安装Cudnn呢?请往下看:

1、进入官网下载对应cuda版本的cudnn

在这里插入图片描述

  • 如何查看cuda版本?

    nvcc --version

在这里插入图片描述

2、下载好相应版本并进行解压安装

3、解压完成后

  • 从下面三个文件夹中找到指定文件,并拷贝相应文件到cuda的相应目录中,具体操作如下图所示

在这里插入图片描述

  • 进入到cuda以下目录,若不是默认安装位置,则可使用****查看

  • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4

在这里插入图片描述

4、测试

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.4\extras\demo_suite

进入相应磁盘目录

运行deviceQuery.exe与bandwidthTest.exe进行测试

如下即说明测试成功.
在这里插入图片描述

在这里插入图片描述

🌹写在最后💖
路漫漫其修远兮,吾将上下而求索!伙伴们,再见!🌹🌹🌹在这里插入图片描述

<think>好的,我需要帮助用户下载cuDNN并正确配置环境变量。首先,我得回忆一下cuDNN的下载流程。用户可能已经安装CUDA,所以需要确认CUDA的版本,因为cuDNN版本必须与CUDA兼容。用户提到的引用[1]和[2]是关于CUDA环境变量配置和Conda环境创建的,这可能和配置cuDNN有关联。 首先,下载cuDNN需要注册NVIDIA开发者账号,这可能是一个步骤。用户需要访问NVIDIA官网,找到cuDNN的下载页面,选择对应CUDA版本的cuDNN。比如,如果用户安装的是CUDA 10.2,那么需要下载对应的cuDNN版本,比如8.0.5。 然后,解压下载的文件,通常是一个tgz压缩包。解压后,用户需要将文件复制到CUDA安装目录中,比如将include和lib64目录下的文件分别复制到CUDA的include和lib64目录下。这可能涉及到使用sudo命令,因为CUDA通常安装在系统目录。 接下来是配置环境变量。引用[1]中提到的是CUDA的环境变量设置,但cuDNN本身不需要额外的环境变量,因为它只是库文件,复制到CUDA目录后系统会自动找到。不过,用户可能在Conda环境中使用,所以引用[2]中提到的创建conda环境可能会有帮助,比如确保环境中的CUDA路径正确。 需要注意的常见错误包括版本不匹配,或者文件复制到错误的目录。此外,用户可能误配置环境变量,导致系统找不到cuDNN库。需要提醒用户检查CUDA版本和cuDNN版本的兼容性,并正确复制文件。 最后,验证安装是否成功,可以通过运行一个深度学习框架的示例,或者检查cuDNN的版本号。例如,使用PyTorch或TensorFlow的测试代码,或者运行cudnn_version.h中的头文件查看版本。 总结步骤:注册账号→下载对应版本→解压复制→验证安装。同时,确保环境变量如LD_LIBRARY_PATH正确设置,可能结合Conda环境使用。</think>### cuDNN下载与配置步骤 #### 一、下载cuDNN 1. **注册NVIDIA开发者账号** 访问[NVIDIA cuDNN下载页面](https://developer.nvidia.com/cudnn),注册并登录账号(免费)。 2. **选择适配的cuDNN版本** 需与已安装CUDA版本严格匹配。例如: - 若CUDA版本为$11.x$,选择cuDNN $8.x.x$; - 若CUDA版本为$10.2$,选择cuDNN $7.6.5$[^1]。 3. **下载对应文件** 选择`Local Installer for Linux (x86_64)`格式的`.tar`压缩包。 --- #### 二、安装cuDNN 1. **解压文件** ```bash tar -xzvf cudnn-<version>-linux-x64-v8.x.x.x.tgz ``` 2. **复制文件到CUDA目录** ```bash sudo cp cuda/include/cudnn*.h /usr/local/cuda-<版本>/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda-<版本>/lib64 sudo chmod a+r /usr/local/cuda-<版本>/include/cudnn*.h /usr/local/cuda-<版本>/lib64/libcudnn* ``` 例如CUDA 11.1: ```bash sudo cp cuda/include/cudnn*.h /usr/local/cuda-11.1/include ``` --- #### 三、配置环境变量 1. **更新动态库缓存** ```bash sudo ldconfig ``` 2. **验证cuDNN路径** 确保CUDA环境变量已配置(引用[1]的配置方法): ```bash export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-<版本>/lib64 export PATH=$PATH:/usr/local/cuda-<版本>/bin ``` --- #### 四、验证安装 1. **通过深度学习框架测试** 在Python环境中运行: ```python import torch print(torch.backends.cudnn.version()) # 应返回cuDNN版本号 ``` 2. **直接查看头文件版本** ```bash cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 ``` --- #### 常见问题 - **版本不匹配**:cuDNNCUDA版本冲突会导致程序崩溃,需严格对照版本矩阵。 - **权限问题**:复制文件时若提示权限不足,需使用`sudo`命令。 - **环境变量未生效**:若使用Conda环境,需在激活环境后重新配置变量[^2]。 ---
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦想new的出来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值