理论与实战:一篇看懂Python词云

本文详细介绍了如何使用Python的jieba库进行中文分词,结合wordcloud库实现基于频率的词云生成,包括停用词处理、自定义参数和图片背景。对比了基于文本和频率的方法,并提供了实际代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理论与实战:一篇看懂Python词云


后宫王镇贴

前言

本文初编辑于2024年2月2日

该项目代码的仓库地址:https://github.com/A-Piece-Of-Maple/WordCloud

CSDN:https://blog.csdn.net/rvdgdsva

博客园:https://www.cnblogs.com/hassle


总结

截至2024.2.2,想要学习词云,能够找到的文章大部分都是【基于文本生成的词云(使用ganerate)】,而不是【基于频率生成的词云(使用generate_from_frequencies)】,而且功能各有残缺,有些API还没有解释清楚,到头来还是要自己总结一下各个零散帖子的精华做一篇新人指导

本程序中文可用,按照词语频率分布,Python实现,调用jieba中文分词库和wordcloud库,支持停用词,支持自定义词组,支持自定义图片背景,支持自定义文字对应图片颜色


实现原理

导入一篇txt文档,使用jieba库对文档中的文字进行分词,计算各个词汇出现的频率,使用wordcloud库按照词汇频率的大小生成词云。

注意,不是使用wordcloud.generate(),这个方法没有按照词汇频率的方式实现词云

停用词

在讲区别之前,来看看停用词是什么。下面是不调用停用词的词云,观感很差对吧。

实现方式区别

【基于文本生成词云】:txt文章->调用wordcloud.generate(),内部调用停用词->保存图片

这种方法观感很差,停用词也不是万能的。把没用的词剔除掉远不如把频率高的词提出来

【基于频率生成词云】:txt文章->分词->去空格空行->自己手动去除停用词->计算频率生成字典->调用wordcloud.generate_from_frequencies()->保存图

这种方法是理想方法

注意!wordcloud.generate()的参数是字符串,wordcloud.generate_from_frequencies()的参数是字典

你们会注意到,【基于频率生成词云】操作会麻烦一些,需要手动去除停用词。笨方法,但是有用。

看源码,对于stopword的操作,如果调用WordCloud()进行对象的创建,这个创建过程是没有办法处理字典元素的,很蠢

stopwords = set([i.lower
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值