Qwen2.5-7B-Instruct模型推理速度与量化对比分析

Qwen2.5-7B-Instruct模型推理速度与量化对比分析

本篇文档分析了Qwen2.5-7B-Instruct模型在不同输入长度、不同量化方式下,基于vLLM推理框架的性能表现,并给出实际部署和优化建议。

1. 推理速度对比表

在这里插入图片描述

  • 本文数据来源于官方性能测试,具体速度会因硬件、驱动、vLLM版本等略有差异。
  • 量化模型需结合实际业务场景进行精度和速度的权衡选择。

推理速度与量化方式分析

  • BF16(半精度浮点):精度最高,但推理速度最慢。
  • GPTQ-Int8/Int4:量化后速度显著提升,尤其是Int4,推理速度最高。
  • AWQ:另一种高效量化方式,速度接近GPTQ-Int4。
  • 输入长度越大,推理速度越慢,但量化优势依然明显。

技术应用建议

  1. 追求推理速度:建议优先选择GPTQ-Int4或AWQ量化模型,适合高并发、低延迟场景。
  2. 追求精度:可选择BF16,但需接受推理速度下降。
  3. 输入长度权衡:输入越长,速度越慢,需结合业务实际需求合理设置。
  4. 部署建议:推荐使用vLLM框架,结合Docker部署,合理配置--ipc=host等参数以提升性能。

2. V100推理服务速度基准测试

2.1 测试环境和指标

测试环境:

  • GPU:Tesla V100-PCIE-32GB
  • CUDA:12.1
  • PyTorch:2.4.0+cu121
  • Model:Qwen2.5-Coder-7B-Instruct-GPTQ-Int4

性能指标:

指标英文名称解释
首次生成token时间TTFT (Time to First Token)从发送请求到生成第一个token的时间(以秒为单位)
每输出token时间TPOT (Time Per Output Token)生成每个输出token所需的时间(以秒为单位)
延迟时间Latency从发送请求到接收完整响应的时间(以秒为单位)
输入token数Input tokens请求中输入的token数量
输出token数Output tokens响应中生成的token数量
吞吐量Throughput每秒输出的token数量(tokens/s)

2.2 客户端测试结果

2.2.1 并发数对性能的影响

每个统计项运行10次,测试结果如下:

并发数TTFT (AVG/P90)Latency (AVG/P90)Throughput (AVG/P90)成功率 (%)
10.199 / 0.2090.916 / 0.91687.07 / 88.44100.00
50.238 / 0.2871.483 / 1.48553.91 / 55.55100.00
100.272 / 0.2882.279 / 2.28235.06 / 35.40100.00
500.362 / 0.6805.014 / 5.05315.95 / 16.19100.00
2.2.2 Prompt长度对性能的影响(5并发)
Prompt字符数TTFT (AVG/P90)Latency (AVG/P90)Throughput (AVG/P90)成功率 (%)
320.231 / 0.2531.471 / 1.47254.35 / 56.18100.00
1280.275 / 0.3111.519 / 1.52052.71 / 54.46100.00
10240.319 / 0.4351.106 / 1.40238.68 / 49.28100.00
2.2.3 输出长度对性能的影响(5并发、开放性prompt)
max_tokensTTFT (AVG/P90)Latency (AVG/P90)Throughput (AVG/P90)成功率 (%)生成Token数
800.425 / 0.4661.589 / 1.73746.72 / 49.89100.0075.1
1280.428 / 0.4682.475 / 2.50751.01 / 51.92100.00126.2
10240.430 / 0.45710.122 / 12.81168.17 / 70.47100.00714.4

关键发现:

  • Prompt长度对推理速度影响有限
  • 推理速度主要与并发数和输出长度正相关
  • 高并发场景下,TTFT和Latency都会显著增加

2.3 推理端测试结果

2.3.1 量化方式兼容性测试
  • AWQ量化:V100架构不支持,无法启动
  • GPTQ量化:低版本vLLM会报warning,升级到vLLM 0.8.1后影响不大
2.3.2 vLLM版本升级前后对比

升级前(低版本vLLM):

并发数TTFT (AVG/P90)Latency (AVG/P90)Throughput (AVG/P90)成功率 (%)
10.193 / 0.2150.990 / 0.99080.80 / 81.65100.00
50.242 / 0.2841.581 / 1.58250.62 / 52.00100.00
100.265 / 0.2812.389 / 2.39333.46 / 33.89100.00
500.336 / 0.3565.491 / 5.50614.57 / 14.70100.00

升级后(vLLM 0.8.1):

并发数TTFT (AVG/P90)Latency (AVG/P90)Throughput (AVG/P90)成功率 (%)
10.210 / 0.3681.030 / 1.03077.67 / 79.93100.00
50.236 / 0.2631.591 / 1.59350.30 / 51.41100.00
100.276 / 0.2842.400 / 2.40433.31 / 33.51100.00
500.327 / 0.3635.530 / 5.54414.46 / 14.56100.00
2.3.3 KV Cache优化测试

开启 --kv-cache-dtype fp8_e5m2 参数后,性能影响不大:

并发数TTFT (AVG/P90)Latency (AVG/P90)Throughput (AVG/P90)成功率 (%)
10.210 / 0.3681.030 / 1.03077.67 / 79.93100.00
50.236 / 0.2631.591 / 1.59350.30 / 51.41100.00
100.276 / 0.2842.400 / 2.40433.31 / 33.51100.00
500.327 / 0.3635.530 / 5.54414.46 / 14.56100.00

2.4 测试结论与优化建议

  1. 并发性能:V100在低并发(1-5)场景下表现优秀,TTFT约0.2秒,吞吐量可达80+ tokens/s
  2. 高并发限制:并发数超过10后,性能下降明显,建议根据业务需求合理设置并发数
  3. 量化兼容性:V100不支持AWQ量化,GPTQ-Int4是最佳选择
  4. 版本影响:vLLM版本升级对性能影响较小,建议使用最新稳定版本
  5. 优化参数:KV Cache优化在V100上效果有限,可选择性开启

3. Qwen2.5-Coder-7B-Instruct vLLM部署与环境配置

本节结合主流社区实践,详细梳理Qwen2.5-Coder-7B-Instruct模型在vLLM框架下的部署、推理参数配置、环境依赖与硬件适配要点。

3.1 远程端口映射与SSH隧道

ssh -CNg -L 8000:127.0.0.1:8000 root@your-server.com -p 22

用于将本地8000端口映射到远程服务器,便于本地访问远程vLLM服务。

3.2 vLLM服务启动命令与参数

python -m vllm.entrypoints.openai.api_server \
  --model /root/autodl-tmp/Qwen2.5-Coder-7B-Instruct \
  --served-model-name Qwen2.5-Coder-7B-Instruct \
  --max-model-len=8192 \
  -q gptq \
  --dtype float16 \
  --gpu-memory-utilization 0.96
  • --max-model-len 8192:最大上下文长度
  • -q gptq:使用GPTQ量化
  • --dtype float16:数据类型为float16(V100显卡不支持bf16)
  • --gpu-memory-utilization 0.96:GPU显存利用率

3.3 Docker容器配置建议

如采用Docker部署,需在docker rundocker-compose.yml中添加:

ipc: host

以提升大模型推理的共享内存性能。

3.4 API调用参数示例

{
  "prompt": "def bubble_sort(arr)",
  "max_token": 80,
  "stream": false
}

3.5 硬件与依赖环境说明

  • V100显卡:仅支持fp16,无法使用bf16精度。
  • 检查PyTorch版本:
    python -c "import torch; print(torch.__version__)"
    
3.5.1 CUDA与PyTorch安装
  1. 安装CUDA 11.3
  2. 安装PyTorch 1.12.1及配套库:
    pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
    
3.5.2 FlashAttention安装(适配CUDA 11.3)

说明:
一般情况下,用户无需手动安装FlashAttention。主流大模型推理框架(如vLLM)的官方Docker镜像或安装包通常已自动集成FlashAttention相关依赖。只有在遇到兼容性问题、环境高度定制或报错提示缺少FlashAttention时,才需要参考下述步骤手动安装。

  1. 安装依赖:
    pip install ninja packaging
    
  2. 编译安装FlashAttention 1.x:
    git clone https://github.com/Dao-AILab/flash-attention
    cd flash-attention
    git checkout v1.0.9  # 兼容CUDA 11.3
    pip install .
    

3.6 参考资料与社区实践


本节内容结合社区最佳实践,便于快速完成Qwen2.5-Coder-7B-Instruct模型的高效推理部署。

### 关于Qwen2.5-7B-Instruct-AWQ模型 #### 模型概述 Qwen2.5-7B-Instruct-AWQ 是基于Qwen系列的大规模预训练语言模型的一个变种版本,该模型经过特定优化处理,在保持原有性能的同时实现了更高效的推理能力。AWQ (Activation-aware Weight Quantization) 技术的应用使得这一版本能够在较低精度下运行而不会显著损失准确性[^1]。 #### 主要特点 - **轻量化设计**:通过激活感知权重量化技术减少参数量并加速计算过程; - **高性能表现**:即使在资源受限环境中也能提供接近原版的输出质量; - **易于集成**:支持多种主流深度学习框架下的快速部署方案; #### 使用指南 ##### 准备工作 为了顺利使用此模型,建议先安装必要的依赖库以及配置好相应的开发环境。对于Python用户来说,可以通过pip工具来获取所需的软件包: ```bash pip install transformers torch accelerate ``` ##### 加载模型实例化对象 下面给出了一段简单的代码片段用于加载已下载好的本地文件或者直接从Hugging Face Hub拉取最新发布的checkpoint: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct-AWQ") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-7B-Instruct-AWQ", trust_remote_code=True).half().cuda() ``` ##### 推理测试 完成上述准备工作之后就可以开始尝试一些基础的任务了,比如生成对话回复、文章摘要等自然语言处理应用场景。这里展示了一个基本的例子说明如何调用API接口来进行文本补全操作: ```python input_text = "你好啊," inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=30) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值