文本分词并统计出现次数最高的几个词Python

本文介绍了如何使用Python进行文本数据分析的词频统计。通过读取文本文件,进行分词、去除停用词,最终找出出现次数最多的N个词。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题描述

在做文本数据分析时,经常遇到需要做词频分析,而做词频分析又经常需要统计出现次数最高的几个词,下面代码给出了基于Python的文本数据统计,基本流程为:首先读取一个文本文件,之后进行分词,再去除停用词,最后统计出现次数最多的N个词。

二、Python代码

import jieba
from collections import Counter
############################################
# 功能:获取文本文件内容
# 输入参数
#       filename:待读取的文本文件名
# 返回值
#       txtConts:读取的文本内容
def GetTxtDataFromFile( filename ):
    with open( filename, mode = 'r' ) as fp:
        txtConts = fp.read()
        return txtConts
############################################
# 功能:分词,并去除分词结果中的停用词
# 输入参数
#       txtConts:原始文本
#       stopWord:停用词
# 返回值
#       cutList:去除停用词之后的分词结果
def CutWithStopWord( txtConts, stopWord ):
    cutList = []
    
### Python文本分词方法及常用库 在Python中,文本分词是自然语言处理中的一个重要步骤,用于将连续的文本拆分为单或短语。以下是几种常用的文本分词方法和相关库: #### 1. 使用 `thulac` 库进行中文分词 `thulac` 是一个高效、易用的中文分词工具。通过设置参数 `seg_only=True`,可以仅执行分词而不进行性标注[^2]。以下是一个使用 `thulac` 进行分词的示例代码: ```python import thulac # 定义待分词的中文文本 text = "我喜欢用Python进行文本处理" # 创建thulac对象指定只进行分词 thu = thulac.thulac(seg_only=True) # 对文本进行分词 result = thu.cut(text, text=True) print(result) ``` #### 2. 使用 `pkuseg` 库进行中文分词 `pkuseg` 是另一个强大的中文分词库,支持多种领域模型和自定义典[^2]。以下是一个简单的 `pkuseg` 分词示例: ```python import pkuseg # 初始化分词器 seg = pkuseg.pkuseg() # 定义待分词的中文文本 text = "我喜欢用Python进行文本处理" # 对文本进行分词 result = seg.cut(text) print(result) ``` #### 3. 使用 `jieba` 库进行中文分词 `jieba` 是一个广泛使用的中文分词库,以其简单性和高效性著称[^1]。它支持精确模式、全模式和搜索引擎模式。以下是一个使用 `jieba` 的示例: ```python import jieba # 定义待分词的中文文本 text = "我喜欢用Python进行文本处理" # 使用精确模式进行分词 result = jieba.lcut(text) print(result) ``` #### 4. 使用正则表达式进行简单分词 对于英文或其他以空格分隔的语言,可以使用正则表达式进行简单的分词[^1]。例如: ```python import re # 定义待分词的英文文本 text = "I love using Python for text processing" # 使用正则表达式按非字母字符分割 result = re.findall(r'\b\w+\b', text) print(result) ``` #### 常用文本处理库总结 - **thulac**:适用于高效的中文分词任务,支持性标注[^2]。 - **pkuseg**:提供高质量的中文分词功能,支持多种领域模型[^2]。 - **jieba**:轻量级且易于使用的中文分词工具,适合大多数应用场景。 - **re(正则表达式)**:适用于简单分词任务,尤其是基于空格分隔的语言。 以上方法和库为Python中的文本分词提供了丰富的选择,可以根据具体需求选择合适的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值